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Influence of Cytoplasmic-nuclear Male Sterility on Agronomic Performance ofSorghum Hybrids
S Ramesh, Belum VS Reddy*, P Sanjana Reddy and B Ramaiah[International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Andhra Pradesh, India]*Corresponding author: b.reddy@cgiar.org

Introduction
The discovery of a cytoplasmic-nuclear male-sterility(CMS) system (Stephens and Holland 1954) [designatedas A1 (milo)] has led to the commercial exploitation ofheterosis of F1 hybrids in sorghum [Sorghum bicolor (L.)Moench]. Subsequently, several alternative non-miloCMS systems (A2, A3 and A4) were identified anddeveloped (Schertz 1994) for use in hybrid breedingprograms to diversify the cytoplasm and nuclear geneticbase of sorghum hybrids. Large numbers of A1-basedhybrids (Reddy et al. 2005) and a few A2-based hybrids(Liu Qing Shan et al. 2000) have been released/marketedfor commercial cultivation all over the globe. The evaluationof CMS-based hybrids in relation to those based on male-fertile counterpart cytoplasm would provide an insight intothe influence of CMS on agronomic performance. As suchstudies are lacking, we made an attempt to fill the gap.
Materials and Methods
The test material consisted of isonuclear, alloplasmic male-sterile (A-) lines in 12 nuclear genetic backgrounds(ICSA 11, -17, -26, -37, -38, -42, -88001, -88004, -88005,-18757, PM 17467A and PM 7061A) with A1 and A2 CMSsystems, and three dual restorer (R-) lines (ICSR 93001,-92003 and -93031). The A-lines selected for the studywere diverse in respect of days to flowering and maturity,plant height and grain yield potential. The 12 A-lineswith A1 and A2 CMS systems were crossed with the threedual R-lines to generate two sets of 36 A × R hybrids. Themale-fertile counterparts (B-lines) which maintain themale-sterility of the 12 A1- and A2-based A-lines wereemasculated and crossed with the same three dual R-linesto obtain 36 B × R crosses. The two sets of 36 A × R (withA1 and A2 cytoplasms) and one set of 36 B × R crossesdiffering only by their cytoplasms were evaluated atICRISAT-Patancheru, India during the rainy season of2005. A split-split-plot design (SSPD) with three replicationswas used. The R-lines were sown in the main plots, the A-lines in the subplots and the cytoplasms in the sub-sub-plots. Each entry was grown in 4 rows of 2 m lengthspaced 75 cm apart. The seedlings were thinned tomaintain a distance of 10 cm between plants one weekafter seedling emergence. Recordings were taken of the

days to 50% flowering, plant height, grain yield and 100-grain weight (g).
Statistical analysis. Analysis of variance (ANOVA) wascarried out as per SSPD. The general combining ability(gca) effects of the parents and the specific combiningability (sca) effects of the crosses were estimated as perKempthorne (1957). The significance or otherwise ofcytoplasmic differences in respect of gca effects of theA-lines and the mean performance and sca effects of thehybrids was determined by comparing with the leastsignificant difference (LSD).
Results and Discussion
Variance components. There were significant differencesamong the A/B-lines (nuclear genotype) for all the traitsand among the R-lines for plant height and grain yield,indicating that the selection of the hybrid parents (A/B-and R-lines) for the study (Table 1) was appropriate. Thesignificant mean squares due to the A/B- × R-linesinteraction indicated that hybrids differ significantly intheir sca effects for all the traits. Cytoplasms (A1, A2 andB) per se appeared to have a significant influence on theexpression of hybrids for all the traits, as was evidentfrom the significant mean squares due to cytoplasm. Thefirst-order interaction of cytoplasm with the nucleargenetic background of A-lines or R-lines and the second-order interaction with A-line and R-lines toward variationof isonuclear hybrids was significant for all the traits,suggesting that cytoplasm does have a significant influenceon the expression of A-lines and hybrids and that thedegree of influence varies with the nuclear genetic back-ground of the A-lines and hybrids for all the traits.
Cytoplasm influence on gca effects. The assessment ofgca effects of hybrid parents is important to judge theirsuitability for developing hybrids. Cytoplasmic differencesfor parental gca effects were evident in only some of thenuclear genetic backgrounds for all the traits (Table 2).However, the magnitude of cytoplasmic differences variedwith the nuclear genetic background of the lines and wastoo small to have any practical significance, but there alsoappeared to be no definite trend favoring any particulartype of cytoplasm for all the traits except grain yield.For instance, while male-fertile cytoplasm-based lines
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ICSA/B 11 and PM 17467A/B were better generalcombiners for earliness than those based on the male-sterile counterpart cytoplasm, the male-sterile cytoplasm-based line ICSA 37 was a better general combiner forlateness than that based on male-fertile counterpart line.Most of the CMS (A1- or the A2)-based lines were bettergeneral combiners for grain yield than those based ontheir male-fertile cytoplasm. The A-lines being male-sterile appear to maximize their fitness in hybridcombinations with the R-lines compared to their counterpartB-lines (with inherent male-fertility). This resulted insuperior average performance by A × R crosses comparedto B × R crosses for grain yield, which obviouslytranslated into better estimates of the gca effects of A-linescompared to those of B-lines.
Hybrid mean performance. A comparison of the overallaverage performance of A × R (in both A1 and A2 back-grounds) and B × R crosses as two separate groupsindicated that while there were no differences betweenthem for days to 50% flowering, A × R crosses (in bothA1 and A2 backgrounds) were significantly taller (by 0.2 min A1 and by 0.1 m in A2 backgrounds) and manifestedhigher grain yield (by 0.7 t ha-1 in A1 and by 0.9 t ha-1 in A2backgrounds) than B × R crosses (Table 3). The A × R(only in the A1 background) crosses had significantly(statistically) larger (by 0.08 g) grains than B × R crosses,though the difference was not visually distinct. However,A × R (A2 background) crosses were comparable to B × Rcrosses in terms of grain size. Significant cytoplasmiceffects were evident for all the traits when the individualnuclear genetic background of A × R (both in A1 and A2)and B × R crosses was examined. For instance, while theA × R (both A1 and A2) crosses, besides being early, were

taller and possessed larger grains compared to those ofB × R crosses in a few nuclear genetic backgrounds, theopposite was true in a few other nuclear genetic backgrounds.In most of the isonuclear genetic backgrounds (26 of the36), A × R (A1 and/or A2) crosses were significantlysuperior to their counterpart B × R crosses for grain yield(Table 3).
Cytoplasmic influence on sca effects. Specific combi-nations of A- and R-lines with good gca effects willremain the essential requirement for the production ofsuperior sorghum hybrids (Duvick 1999). As was observedfor gca effects, cytoplasmic effects were detected for scaeffects of hybrids for all the traits only in some of thenuclear genetic backgrounds (data not shown).As A × R and B × R crosses differ only by the cytoplasmicsterility-inducing genes/factors which are present on themitochondrial genome, the higher grain yield potential ofA × R crosses compared to those of B × R crosses couldbe attributed to the plieotropic effect of the factors thatinduce male-sterility or due to the closely linked locicontributing to grain yield. Heterozygosity at the male-sterility/male-fertility loci and/or at linked loci withoverdominance effects in A × R crosses in contrast tohomozygosity in B × R crosses might also be responsiblefor the significant difference in performance between A × Rand B × R crosses for grain yield. The significant influenceof cytoplasmic genes/factors on grain yield in pearl millet(Virk and Brar 1993) lends adequate support to theseconsiderations. However, the distinction between theroles of cytoplasmic factors per se and cytoplasm-nucleargenetic interactions is complicated, as the very expressionof CMS and its restoration is primarily based on theinteraction of genes present on mitochondrial DNA and

Table 1. Analysis of variance of isonuclear alloplasmic (A1, A2 and B) sorghum hybrids for agronomic traits, ICRISAT-Patancheru, Andhra Pradesh, India, rainy season, 2005.
Mean sum of squares____________________________________________________________Degrees of Days to 50% Plant height Grain yield 100-grainSource of variation freedom flowering (m) (t ha-1) weight (g)

Replication 2 53.40 0.32 4.33 0.37R-line 2 32.40 11.54** 14.77* 1.21Residual 4 9.10 0.02 1.32 0.21A/B-line 11 32.86** 0.21** 1.62** 0.30**R-line × A/B-line 22 11.72** 0.70** 1.71** 0.11**Residual 66 1.74 0.05 0.42 0.01Cytoplasm (A1, A2 and B) 2 4.11* 0.74** 22.04** 0.08*R-line × cytoplasm 4 67.43** 1.91** 10.66** 0.14**A/B-line × cytoplasm 22 8.22** 0.12** 0.81** 0.04**R-line × A/B-line × cytoplasm 44 4.06** 0.19** 1.22** 0.07**Residual 144  1.21  0.34  0.29  0.20
*Significant at P = 0.05; **Significant at P = 0.01.
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the corresponding nuclear restorer genes (Frei et al.2004). Systematic investigation is necessary to identifythe cytoplasmic factors that contribute to grain yield bymanipulating the mitochondrial genome.
Conclusions
Male-sterility inducing cytoplasms (A1 and A2) do have asignificant influence on agronomic traits including grainyield, but only in some nuclear genetic backgrounds. TheCMS-based A-lines and hybrids were significantly betterthan those based on their male-fertile counterparts for grainyield in terms of their gca effects and mean performance,respectively. However, it is to be noted that these resultsare based on limited data and need confirmation by multi-year and/or multilocation evaluation.
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