9 research outputs found

    MinimizaciĂłn global de un polinomio en la recta real

    Get PDF
    En este artŽıculo presentamos y probamos numŽericamente un nuevo algoritmo para la minimizaciŽon global de un polinomio de grado par. El algoritmo estŽa basado en la simple idea de trasladar verticalmente el grafo del polinomio hasta que el eje OX sea tangente al grafo del polinomio trasladado. En esta privilegiada posiciŽon, cualquier raŽız real del polinomio trasladado es un mŽınimo global del polinomio original

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic

    Atrane complexes chemistry as a tool for obtaining trimodal UVM-7-like porous silica

    Full text link
    This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of Coordination Chemistry on 2018, available online: http://www.tandfonline.com/10.1080/00958972.2018.1442002[EN] The use of atrane complexes as hydrolytic precursors enables the homogeneous incorporation of manganese (25Si/Mn48) throughout the porous walls of the nanoparticles of a surfactant-templated bimodal mesoporous silica (UVM-7). The subsequent leaching of the manganese nanodomains allows adding controlled microporosity to the host silica framework. The resulting final silica material presents three pore systems structured at different length scales: interparticle textural-type macroporosity (ca. 43.2nm), ordered intraparticle mesoporosity (ca. 2.63nm; after template removal), and well-dispersed microporosity (< 2nm; as consequence of the lixiviation of the Mn-rich domains). The good dispersion of the guest element (Mn) in the silica intermediate provided by the atrane route is responsible for the disordered but regular microporosity achieved.This work was supported by the Spanish Ministerio de Economia y Competitividad and the European Feder Funds [grant number MAT2015-64139-C4-2-R].Garrido, MD.; GarcĂ­a-Llacer, C.; El Haskouri, J.; Marcos MartĂ­nez, MD.; SĂĄnchez-Royo, JF.; BeltrĂĄn, A.; AmorĂłs, P. (2018). Atrane complexes chemistry as a tool for obtaining trimodal UVM-7-like porous silica. Journal of Coordination Chemistry. 71(6):776-785. https://doi.org/10.1080/00958972.2018.1442002776785716Puri, J. K., Singh, R., & Chahal, V. K. (2011). Silatranes: a review on their synthesis, structure, reactivity and applications. Chem. Soc. Rev., 40(3), 1791-1840. doi:10.1039/b925899jGlowacki, B., Lutter, M., Alnasr, H., Seymen, R., Hiller, W., & Jurkschat, K. (2017). Introducing Stereogenic Centers to Group XIV Metallatranes. Inorganic Chemistry, 56(9), 4937-4949. doi:10.1021/acs.inorgchem.6b03126Mylonas-Margaritis, I., Mayans, J., Sakellakou, S.-M., P. Raptopoulou, C., Psycharis, V., Escuer, A., & P. Perlepes, S. (2017). Using the Singly Deprotonated Triethanolamine to Prepare Dinuclear Lanthanide(III) Complexes: Synthesis, Structural Characterization and Magnetic Studies. Magnetochemistry, 3(1), 5. doi:10.3390/magnetochemistry3010005Dumitriu, A.-M.-C., Cazacu, M., Bargan, A., Shova, S., & Turta, C. (2013). Cu(II) and Ni(II) complexes with a tri-, tetra- or hexadentate triethanolamine ligand: Structural characterization and properties. Polyhedron, 50(1), 255-263. doi:10.1016/j.poly.2012.11.009Voronkov, M. G. (1966). Silatranes: Intra-complex heterocyclic compounds of pentacordinated silicon. Pure and Applied Chemistry, 13(1-2), 35-60. doi:10.1351/pac196613010035Verkade, J. G. (1994). Main group atranes: chemical and structural features. Coordination Chemistry Reviews, 137, 233-295. doi:10.1016/0010-8545(94)03007-dVoronkov, M. G., & Baryshok, V. P. (2010). Atranes as a new generation of biologically active substances. Herald of the Russian Academy of Sciences, 80(6), 514-521. doi:10.1134/s1019331610060079Gudat, D. (2017). The scientific work of John G. Verkade—A retrospect. Phosphorus, Sulfur, and Silicon and the Related Elements, 192(3), 255-258. doi:10.1080/10426507.2017.1273643Cabrera, S., El Haskouri, J., Guillem, C., Latorre, J., BeltrĂĄn-Porter, A., BeltrĂĄn-Porter, D., 
 AmorĂłs *, P. (2000). Generalised syntheses of ordered mesoporous oxides: the atrane route. Solid State Sciences, 2(4), 405-420. doi:10.1016/s1293-2558(00)00152-7Soler-Illia, G. J. de A. A., Sanchez, C., Lebeau, B., & Patarin, J. (2002). Chemical Strategies To Design Textured Materials:  from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures. Chemical Reviews, 102(11), 4093-4138. doi:10.1021/cr0200062El Haskouri, J., Morales, J. M., Ortiz de Zárate, D., Fernández, L., Latorre, J., Guillem, C., 
 Amorós, P. (2008). Nanoparticulated Silicas with Bimodal Porosity: Chemical Control of the Pore Sizes. Inorganic Chemistry, 47(18), 8267-8277. doi:10.1021/ic800893aPuĂ©rtolas, B., Mayoral, Á., Arenal, R., Solsona, B., Moragues, A., Murcia-Mascaros, S., 
 GarcĂ­a, T. (2015). High-Temperature Stable Gold Nanoparticle Catalysts for Application under Severe Conditions: The Role of TiO2 Nanodomains in Structure and Activity. ACS Catalysis, 5(2), 1078-1086. doi:10.1021/cs501741uAdvanced Materials. (s. f.). doi:10.1002/(issn)1521-4095Burguete, P., BeltrĂĄn, A., Guillem, C., Latorre, J., PĂ©rez-Pla, F., BeltrĂĄn, D., & AmorĂłs, P. (2012). Pore Length Effect on Drug Uptake and Delivery by Mesoporous Silicas. ChemPlusChem, 77(9), 817-831. doi:10.1002/cplu.201200099Tortajada, M., RamĂłn, D., BeltrĂĄn, D., & AmorĂłs, P. (2005). Hierarchical bimodal porous silicas and organosilicas for enzyme immobilization. Journal of Materials Chemistry, 15(35-36), 3859. doi:10.1039/b504605jPĂ©rez-Cabero, M., HungrĂ­a, A. B., Morales, J. M., Tortajada, M., RamĂłn, D., Moragues, A., 
 AmorĂłs, P. (2012). Interconnected mesopores and high accessibility in UVM-7-like silicas. Journal of Nanoparticle Research, 14(8). doi:10.1007/s11051-012-1045-8Rolison, D. R. (2003). Catalytic Nanoarchitectures--the Importance of Nothing and the Unimportance of Periodicity. Science, 299(5613), 1698-1701. doi:10.1126/science.1082332Yang, X.-Y., Chen, L.-H., Li, Y., Rooke, J. C., Sanchez, C., & Su, B.-L. (2017). Hierarchically porous materials: synthesis strategies and structure design. Chemical Society Reviews, 46(2), 481-558. doi:10.1039/c6cs00829aHuerta, L., Guillem, C., Latorre, J., BeltrĂĄn, A., MartĂ­nez-Måñez, R., Marcos, M. D., 
 AmorĂłs, P. (2006). Bases for the synthesis of nanoparticulated silicas with bimodal hierarchical porosity. Solid State Sciences, 8(8), 940-951. doi:10.1016/j.solidstatesciences.2006.02.038Nightingale, E. R. (1959). Rapid Spectrophotometric Determination of Manganese. Triethanolamine and Peroxide Complexes of Manganese(III). Analytical Chemistry, 31(1), 146-148. doi:10.1021/ac60145a036Klepetáƙ, J., & Ć tulĂ­k, K. (1974). The composition, stability, and the electrochemical behaviour of the manganese(III) complex with triethanolamine. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 55(2), 255-261. doi:10.1016/s0022-0728(74)80125-7Flaschka, H. A., & Hornstein, J. V. (1978). Determination of manganese with triethanolamine and o-tolidine by conventional and long-path photometry. Analytica Chimica Acta, 100, 469-477. doi:10.1016/s0003-2670(01)93341-0Andruh, M., HĂŒbner, K., Noltemeyer, M., & Roesky, H. W. (1993). Syntheses and Structures of Three Mononuclear Coordination Compounds Containing Six- and Seven-Coordinated Manganese(II) Ions. Zeitschrift fĂŒr Naturforschung B, 48(5), 591-597. doi:10.1515/znb-1993-0508Masoud, M. S., Abou El-Enein, S. A., Motaweh, H. A., & Ali, A. E. (2004). Thermal and electrical conductivity properties of some CrIII, MnIIand amino alcohol complexes. Journal of Thermal Analysis and Calorimetry, 75(1), 51-61. doi:10.1023/b:jtan.0000017327.45144.9aFernandez, L., Viruela-Martin, P., Latorre, J., Guillem, C., BeltrĂĄn, A., & AmorĂłs, P. (2007). Molecular precursors of mesostructured silica materials in the atrane route: A DFT/GIAO/NBO theoretical study. Journal of Molecular Structure: THEOCHEM, 822(1-3), 89-102. doi:10.1016/j.theochem.2007.07.022Serrano, D. P., Escola, J. M., & Pizarro, P. (2013). Synthesis strategies in the search for hierarchical zeolites. Chem. Soc. Rev., 42(9), 4004-4035. doi:10.1039/c2cs35330jMitchell, S., Pinar, A. B., Kenvin, J., Crivelli, P., KĂ€rger, J., & PĂ©rez-RamĂ­rez, J. (2015). Structural analysis of hierarchically organized zeolites. Nature Communications, 6(1). doi:10.1038/ncomms9633Kresge, C. T., & Roth, W. J. (2013). The discovery of mesoporous molecular sieves from the twenty year perspective. Chemical Society Reviews, 42(9), 3663. doi:10.1039/c3cs60016

    The miniJPAS survey: A preview of the Universe in 56 colors

    No full text
    The Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS) will scan thousands of square degrees of the northern sky with a unique set of 56 filters using the dedicated 2.55 m Javalambre Survey Telescope (JST) at the Javalambre Astrophysical Observatory. Prior to the installation of the main camera (4.2 deg2 field-of-view with 1.2 Gpixels), the JST was equipped with the JPAS-Pathfinder, a one CCD camera with a 0.3 deg2 field-of-view and plate scale of 0.23 arcsec pixel−1. To demonstrate the scientific potential of J-PAS, the JPAS-Pathfinder camera was used to perform miniJPAS, a ∌1 deg2 survey of the AEGIS field (along the Extended Groth Strip). The field was observed with the 56 J-PAS filters, which include 54 narrow band (FWHM ∌ 145 Å) and two broader filters extending to the UV and the near-infrared, complemented by the u, g, r, i SDSS broad band filters. In this miniJPAS survey overview paper, we present the miniJPAS data set (images and catalogs), as we highlight key aspects and applications of these unique spectro-photometric data and describe how to access the public data products. The data parameters reach depths of magAB ≃ 22−23.5 in the 54 narrow band filters and up to 24 in the broader filters (5σ in a 3″ aperture). The miniJPAS primary catalog contains more than 64 000 sources detected in the r band and with matched photometry in all other bands. This catalog is 99% complete at r = 23.6 (r = 22.7) mag for point-like (extended) sources. We show that our photometric redshifts have an accuracy better than 1% for all sources up to r = 22.5, and a precision of ≀0.3% for a subset consisting of about half of the sample. On this basis, we outline several scientific applications of our data, including the study of spatially-resolved stellar populations of nearby galaxies, the analysis of the large scale structure up to z ∌ 0.9, and the detection of large numbers of clusters and groups. Sub-percent redshift precision can also be reached for quasars, allowing for the study of the large-scale structure to be pushed to z > 2. The miniJPAS survey demonstrates the capability of the J-PAS filter system to accurately characterize a broad variety of sources and paves the way for the upcoming arrival of J-PAS, which will multiply this data by three orders of magnitude

    The miniJPAS survey: a preview of the Universe in 56 colours

    No full text
    International audienceThe Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS) will soon start to scan thousands of square degrees of the northern extragalactic sky with a unique set of 5656 optical filters from a dedicated 2.552.55m telescope, JST, at the Javalambre Astrophysical Observatory. Before the arrival of the final instrument (a 1.2 Gpixels, 4.2deg2^2 field-of-view camera), the JST was equipped with an interim camera (JPAS-Pathfinder), composed of one CCD with a 0.3deg2^2 field-of-view and resolution of 0.23 arcsec pixel−1^{-1}. To demonstrate the scientific potential of J-PAS, with the JPAS-Pathfinder camera we carried out a survey on the AEGIS field (along the Extended Groth Strip), dubbed miniJPAS. We observed a total of ∌1\sim 1 deg2^2, with the 5656 J-PAS filters, which include 5454 narrow band (NB, FWHM∌145\rm{FWHM} \sim 145Angstrom) and two broader filters extending to the UV and the near-infrared, complemented by the u,g,r,iu,g,r,i SDSS broad band (BB) filters. In this paper we present the miniJPAS data set, the details of the catalogues and data access, and illustrate the scientific potential of our multi-band data. The data surpass the target depths originally planned for J-PAS, reaching magAB\rm{mag}_{\rm {AB}} between ∌22\sim 22 and 23.523.5 for the NB filters and up to 2424 for the BB filters (5σ5\sigma in a 33~arcsec aperture). The miniJPAS primary catalogue contains more than 64,00064,000 sources extracted in the rr detection band with forced photometry in all other bands. We estimate the catalogue to be complete up to r=23.6r=23.6 for point-like sources and up to r=22.7r=22.7 for extended sources. Photometric redshifts reach subpercent precision for all sources up to r=22.5r=22.5, and a precision of ∌0.3\sim 0.3% for about half of the sample. (Abridged

    The miniJPAS survey: A preview of the Universe in 56 colors

    No full text
    International audienceThe Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS) will scan thousands of square degrees of the northern sky with a unique set of 56 filters using the dedicated 2.55 m Javalambre Survey Telescope (JST) at the Javalambre Astrophysical Observatory. Prior to the installation of the main camera (4.2 deg2 field-of-view with 1.2 Gpixels), the JST was equipped with the JPAS-Pathfinder, a one CCD camera with a 0.3 deg2 field-of-view and plate scale of 0.23 arcsec pixel−1. To demonstrate the scientific potential of J-PAS, the JPAS-Pathfinder camera was used to perform miniJPAS, a ∌1 deg2 survey of the AEGIS field (along the Extended Groth Strip). The field was observed with the 56 J-PAS filters, which include 54 narrow band (FWHM ∌ 145 Å) and two broader filters extending to the UV and the near-infrared, complemented by the u, g, r, i SDSS broad band filters. In this miniJPAS survey overview paper, we present the miniJPAS data set (images and catalogs), as we highlight key aspects and applications of these unique spectro-photometric data and describe how to access the public data products. The data parameters reach depths of magAB ≃ 22−23.5 in the 54 narrow band filters and up to 24 in the broader filters (5σ in a 3″ aperture). The miniJPAS primary catalog contains more than 64 000 sources detected in the r band and with matched photometry in all other bands. This catalog is 99% complete at r = 23.6 (r = 22.7) mag for point-like (extended) sources. We show that our photometric redshifts have an accuracy better than 1% for all sources up to r = 22.5, and a precision of ≀0.3% for a subset consisting of about half of the sample. On this basis, we outline several scientific applications of our data, including the study of spatially-resolved stellar populations of nearby galaxies, the analysis of the large scale structure up to z ∌ 0.9, and the detection of large numbers of clusters and groups. Sub-percent redshift precision can also be reached for quasars, allowing for the study of the large-scale structure to be pushed to z > 2. The miniJPAS survey demonstrates the capability of the J-PAS filter system to accurately characterize a broad variety of sources and paves the way for the upcoming arrival of J-PAS, which will multiply this data by three orders of magnitude.Key words: surveys / techniques: photometric / astronomical databases: miscellaneous / stars: general / galaxies: general / cosmology: observations⋆ miniJPAS data and associated value added catalogs are publicly available http://archive.cefca.es/catalogues/minijpas-pdr20191

    Guía Europea de Prevención Cardiovascular en la Pråctica Clínica. Adaptación española del CEIPC 2008

    No full text
    corecore