334 research outputs found

    Placental-mediated increased cytokine response to lipopolysaccharides: a potential mechanism for enhanced inflammation susceptibility of the preterm fetus.

    Get PDF
    BackgroundCerebral palsy is a nonprogressive motor impairment syndrome that has no effective cure. The etiology of most cases of cerebral palsy remains unknown; however, recent epidemiologic data have demonstrated an association between fetal neurologic injury and infection/inflammation. Maternal infection/inflammation may be associated with the induction of placental cytokines that could result in increased fetal proinflammatory cytokine exposure, and development of neonatal neurologic injury. Therefore, we sought to explore the mechanism by which maternal infection may produce a placental inflammatory response. We specifically examined rat placental cytokine production and activation of the Toll-like receptor 4 (TLR4) pathway in response to lipopolysaccharide exposure at preterm and near-term gestational ages.MethodsPreterm (e16) or near-term (e20) placental explants from pregnant rats were treated with 0, 1, or 10 μg/mL lipopolysaccharide. Explant integrity was assessed by lactate dehydrogenase assay. Interleukin-6 and tumor necrosis alpha levels were determined using enzyme-linked immunosorbent assay kits. TLR4 and phosphorylated nuclear factor kappa light chain enhancer of activated B cells (NFκB) protein expression levels were determined by Western blot analysis.ResultsAt both e16 and e20, lactate dehydrogenase levels were unchanged by treatment with lipopolysaccharide. After exposure to lipopolysaccharide, the release of interleukin-6 and tumor necrosis alpha from e16 placental explants increased by 4-fold and 8-9-fold, respectively (P < 0.05 versus vehicle). Conversely, interleukin-6 release from e20 explants was not significantly different compared with vehicle, and tumor necrosis alpha release was only 2-fold higher (P < 0.05 versus vehicle) following exposure to lipopolysaccharide. Phosphorylated NFκB protein expression was significantly increased in the nuclear fraction from placental explants exposed to lipopolysaccharide at both e16 and e20, although TLR4 protein expression was unaffected.ConclusionLipopolysaccharide induces higher interleukin-6 and tumor necrosis alpha expression at e16 versus e20, suggesting that preterm placentas may have a greater placental cytokine response to lipopolysaccharide infection. Furthermore, increased phosphorylated NFκB indicates that placental cytokine induction may occur by activation of the TLR4 pathway

    Case Study: Fetal Breathing Movements as a Proxy for Fetal Lung Maturity Estimation

    Full text link
    Premature births can lead to complications, with fetal lung immaturity being a primary concern. Currently, fetal lung maturity (FLM) requires an invasive surfactant extraction procedure between the 32nd and 39th weeks of pregnancy. Unfortunately, there is no non-invasive method for FLM assessment. This work hypothesized that fetal breathing movement (FBM) and surfactant levels are inversely coupled and that FBM can serve as a proxy for FLM estimation. To investigate the correlation between FBM and FLM, antenatal corticosteroid (ACS) was administered to increase fetal pulmonary surfactant levels in a high-risk 35th-week pregnant woman showing intrauterine growth restriction. Synchronous sonographic and phonographic measurements were continuously recorded for 25 minutes before and after the ASC treatments. Before the ACS injection, 268 continuous movements FBM episodes were recorded. The number of continuous FBM episodes significantly decreased to 3, 43, and 79 within 24, 48, and 72 hours, respectively, of the first injection of ACS, suggesting an inversely coupled connection between FBM and surfactant level s. Therefore, FBM may serve as a proxy for FLM estimation. Quantitative confirmation of these findings would suggest that FBM measurements could be used as a non-invasive and widely accessible FLM-assessment tool for high-risk pregnancies and routine examinations.Comment: 4 pages, 3 figures, 50th Computing in Cardiology conference in Atlanta, Georgia, USA on 1st - 4th October 202

    Effect of androgen treatment during foetal and/or neonatal life on ovarian function in prepubertal and adult rats

    Get PDF
    We investigated the effects of different windows of testosterone propionate (TP) treatment during foetal and neonatal life in female rats to determine whether and when excess androgen exposure would cause disruption of adult reproductive function. Animals were killed prepubertally at d25 and as adults at d90. Plasma samples were taken for hormone analysis and ovaries serial sectioned for morphometric analyses. In prepubertal animals, only foetal+postnatal and late postnatal TP resulted in increased body weights, and an increase in transitory, but reduced antral follicle numbers without affecting total follicle populations. Treatment with TP during both foetal+postnatal life resulted in the development of streak ovaries with activated follicles containing oocytes that only progressed to a small antral (smA) stage and inactive uteri. TP exposure during foetal or late postnatal life had no effect upon adult reproductive function or the total follicle population, although there was a reduction in the primordial follicle pool. In contrast, TP treatment during full postnatal life (d1-25) resulted in anovulation in adults (d90). These animals were heavier, had a greater ovarian stromal compartment, no differences in follicle thecal cell area, but reduced numbers of anti-Mullerian hormone-positive smA follicles when compared with controls. Significantly reduced uterine weights lead reduced follicle oestradiol production. These results support the concept that androgen programming of adult female reproductive function occurs only during specific time windows in foetal and neonatal life with implications for the development of polycystic ovary syndrome in women

    Preoperative muscle weakness as defined by handgrip strength and postoperative outcomes: a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reduced muscle strength- commonly characterized by decreased handgrip strength compared to population norms- is associated with numerous untoward outcomes. Preoperative handgrip strength is a potentially attractive real-time, non-invasive, cheap and easy-to-perform "bedside" assessment tool. Using systematic review procedure, we investigated whether preoperative handgrip strength was associated with postoperative outcomes in adults undergoing surgery.</p> <p>Methods</p> <p>PRISMA and MOOSE consensus guidelines for reporting systematic reviews were followed. MEDLINE, EMBASE, and the Cochrane Central Register of Controlled Clinical Trials (1980-2010) were systematically searched by two independent reviewers. The selection criteria were limited to include studies of preoperative handgrip strength in human adults undergoing non-emergency, cardiac and non-cardiac surgery. Study procedural quality was analysed using the Newcastle-Ottawa Quality Assessment score. The outcomes assessed were postoperative morbidity, mortality and hospital stay.</p> <p>Results</p> <p>Nineteen clinical studies (17 prospective; 4 in urgent surgery) comprising 2194 patients were identified between1980-2010. Impaired handgrip strength and postoperative morbidity were defined inconsistently between studies. Only 2 studies explicitly ensured investigators collecting postoperative outcomes data were blinded to preoperative handgrip strength test results. The heterogeneity of study design used and the diversity of surgical procedures precluded formal meta-analysis. Despite the moderate quality of these observational studies, lower handgrip strength was associated with increased morbidity (n = 10 studies), mortality (n = 2/5 studies) and length of hospital stay (n = 3/7 studies).</p> <p>Conclusions</p> <p>Impaired preoperative handgrip strength may be associated with poorer postoperative outcomes, but further work exploring its predictive power is warranted using prospectively acquired, objectively defined measures of postoperative morbidity.</p

    Design and Organization of the Dexamethasone, Light Anesthesia and Tight Glucose Control (DeLiT) Trial: a factorial trial evaluating the effects of corticosteroids, glucose control, and depth-of-anesthesia on perioperative inflammation and morbidity from major non-cardiac surgery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The perioperative period is characterized by an intense inflammatory response. Perioperative inflammation promotes postoperative morbidity and increases mortality. Blunting the inflammatory response to surgical trauma might thus improve perioperative outcomes. We are studying three interventions that potentially modulate perioperative inflammation: corticosteroids, tight glucose control, and light anesthesia.</p> <p>Methods/Design</p> <p>The DeLiT Trial is a factorial randomized single-center trial of dexamethasone vs placebo, intraoperative tight vs. conventional glucose control, and light vs deep anesthesia in patients undergoing major non-cardiac surgery. Anesthetic depth will be estimated with Bispectral Index (BIS) monitoring (Aspect medical, Newton, MA). The primary outcome is a composite of major postoperative morbidity including myocardial infarction, stroke, sepsis, and 30-day mortality. C-reactive protein, a measure of the inflammatory response, will be evaluated as a secondary outcome. One-year all-cause mortality as well as post-operative delirium will be additional secondary outcomes. We will enroll up to 970 patients which will provide 90% power to detect a 40% reduction in the primary outcome, including interim analyses for efficacy and futility at 25%, 50% and 75% enrollment.</p> <p>Discussion</p> <p>The DeLiT trial started in February 2007. We expect to reach our second interim analysis point in 2010. This large randomized controlled trial will provide a reliable assessment of the effects of corticosteroids, glucose control, and depth-of-anesthesia on perioperative inflammation and morbidity from major non-cardiac surgery. The factorial design will enable us to simultaneously study the effects of the three interventions in the same population, both individually and in different combinations. Such a design is an economically efficient way to study the three interventions in one clinical trial vs three.</p> <p>Trial registration</p> <p><b>This trial is registered at </b>Clinicaltrials.gov <b>#</b>: NTC00433251</p

    Linking early-life NMDAR hypofunction and oxidative stress in schizophrenia pathogenesis.

    Get PDF
    Molecular, genetic and pathological evidence suggests that deficits in GABAergic parvalbumin-positive interneurons contribute to schizophrenia pathophysiology through alterations in the brain's excitation-inhibition balance that result in impaired behaviour and cognition. Although the factors that trigger these deficits are diverse, there is increasing evidence that they converge on a common pathological hub that involves NMDA receptor hypofunction and oxidative stress. These factors have been separately linked to schizophrenia pathogenesis, but evidence now suggests that they are mechanistically interdependent and contribute to a common schizophrenia-associated pathology

    Non-Steroidal Anti-Inflammatory Drugs and Cognitive Function: Are Prostaglandins at the Heart of Cognitive Impairment in Dementia and Delirium ?

    Get PDF
    Studies of non-steroidal anti-inflammatory drugs (NSAIDs) in rheumatoid arthritis imply that inflammation is important in the development of Alzheimer’s disease (AD). However, these drugs have not alleviated the symptoms of AD in those who have already developed dementia. This suggests that the primary mediator targeted by these drugs, PGE2, is not actively suppressing memory function in AD. Amyloid-β oligomers appear to be important for the mild cognitive changes seen in AD transgenic mice, yet amyloid immunotherapy has also proven unsuccessful in clinical trials. Collectively, these findings indicate that NSAIDs may target a prodromal process in mice that has already passed in those diagnosed with AD, and that synaptic and neuronal loss are key determinants of cognitive dysfunction in AD. While the role of inflammation has not yet become clear, inflammatory processes definitely have a negative impact on cognitive function during episodes of delirium during dementia. Delirium is an acute and profound impairment of cognitive function frequently occurring in aged and demented patients exposed to systemic inflammatory insults, which is now recognised to contribute to long-term cognitive decline. Recent work in animal models is beginning to shed light on the interactions between systemic inflammation and CNS pathology in these acute exacerbations of dementia. This review will assess the role of prostaglandin synthesis in the memory impairments observed in dementia and delirium and will examine the relative contribution of amyloid, synaptic and neuronal loss. We will also discuss how understanding the role of inflammatory mediators in delirious episodes will have major implications for ameliorating the rate of decline in the demented population
    corecore