130 research outputs found

    Using CMS Open Data in research – challenges and directions

    Get PDF
    The CMS experiment at CERN has released research-quality data from particle collisions at the LHC since 2014. Almost all data from the first LHC run in 2010–2012 with the corresponding simulated samples are now in the public domain, and several scientific studies have been performed using these data. This paper summarizes the available data and tools, reviews the challenges in using them in research, and discusses measures to improve their usability.Peer reviewe

    Climate of the Field: Snowmass 2021

    Full text link
    How are formal policies put in place to create an inclusive, equitable, safe environment? How do these differ between different communities of practice (institutions, labs, collaborations, working groups)? What policies towards a more equitable community are working? For those that aren't working, what external support is needed in order to make them more effective? We present a discussion of the current climate of the field in high energy particle physics and astrophysics (HEPA), as well as current efforts toward making the community a more diverse, inclusive, and equitable environment. We also present issues facing both institutions and HEPA collaborations, with a set of interviews with a selection of HEPA collaboration DEI leaders. We encourage the HEPA community and the institutions & agencies that support it to think critically about the prioritization of people in HEPA over the coming decade, and what resources and policies need to be in place in order to protect and elevate minoritized populations within the HEPA community.Comment: Contribution to Snowmass 202

    Unveiling hidden physics at the LHC

    Get PDF
    The field of particle physics is at the crossroads. The discovery of a Higgs-like boson completed the Standard Model (SM), but the lacking observation of convincing resonances Beyond the SM (BSM) offers no guidance for the future of particle physics. On the other hand, the motivation for New Physics has not diminished and is, in fact, reinforced by several striking anomalous results in many experiments. Here we summarise the status of the most significant anomalies, including the most recent results for the flavour anomalies, the multi-lepton anomalies at the LHC, the Higgs-like excess at around 96 GeV, and anomalies in neutrino physics, astrophysics, cosmology, and cosmic rays. While the LHC promises up to 4 ab of integrated luminosity and far-reaching physics programmes to unveil BSM physics, we consider the possibility that the latter could be tested with present data, but that systemic shortcomings of the experiments and their search strategies may preclude their discovery for several reasons, including: final states consisting in soft particles only, associated production processes, QCD-like final states, close-by SM resonances, and SUSY scenarios where no missing energy is produced. New search strategies could help to unveil the hidden BSM signatures, devised by making use of the CERN open data as a new testing ground. We discuss the CERN open data with its policies, challenges, and potential usefulness for the community. We showcase the example of the CMS collaboration, which is the only collaboration regularly releasing some of its data. We find it important to stress that individuals using public data for their own research does not imply competition with experimental efforts, but rather provides unique opportunities to give guidance for further BSM searches by the collaborations. Wide access to open data is paramount to fully exploit the LHCs potential.Acknowledgements We thank S. Kraml for useful comments. SK is supported by the Austrian Science Fund Elise-Richter grant project number V592-N27. ND acknowledges the support of Department of Science and Technology of the Government of India via the Ramanujan Fellowship SB/S2/RJN-070/2018. BB is supported by the ERC research grant NEO-NAT no. 669668. ZB is supported in part by the MIUR grant PRIN 2017X7X85K and in part by the SRNSF grant DI- 18-335. TH is supported in part by the U.S. Department of Energy under grant No. DE-FG02-95ER40896. KC is supported in part by Taiwan Ministry of Sciences and Technology with grant number MoST- 110-2112-M-007-017-MY3. JT is supported by the National Science Foundation under Cooperative Agreement PHY-2019786 (The NSF AI Institute for Artificial Intelligence and Fundamental Interactions, http://iaifi.org/), and by the U.S. DOE Office of High Energy Physics under grant number DE-SC0012567. A.C. and C.A.M. acknowledge financial support by the Swiss National Science Foundation, Project No. PP00P2_176884. M.H. is supported by the Swiss National Science Foundation, Project No. PCEFP2_181117. MB is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under grant 396021762 – TRR 257. B.C. is supported by the Italian Ministry of Research (MIUR) under the Grant No. PRIN 20172LNEEZ. A.P. is supported by the SpanishGovernment and ERDF funds from the EU Commission [grant FPA2017-84445-P] and by the Generalitat Valenciana [grant Prometeo/2017/053]. BM and XR are grateful for support from the South African Department of Science and Innovation through the SA-CERN programme and the National Research Foundation for various forms of support. MK was supported by MIUR (Italy) under a contract PRIN 2015P5SBHT and by INFN Sezione di Roma La Sapienza and partially supported by the ERC- 2010 DaMESyFla Grant Agreement Number: 267985. Contribution by MB is based upon work supported by the National Science Foundation under Grant No. PHY-1913923. DM acknowledges support by MIUR grant PRIN 2017L5W2PT and the INFN grant SESAMO. The work of BD is supported in part by the U.S. Department of Energy under Grant No. DE-SC0017987. GB acknowledges the support of the National Research Foundation of South Africa via Thuthuka grant no. 117969

    Unveiling hidden physics at the LHC

    Get PDF
    The field of particle physics is at the crossroads. The discovery of a Higgs-like boson completed the Standard Model (SM), but the lacking observation of convincing resonances Beyond the SM (BSM) offers no guidance for the future of particle physics. On the other hand, the motivation for New Physics has not diminished and is, in fact, reinforced by several striking anomalous results in many experiments. Here we summarise the status of the most significant anomalies, including the most recent results for the flavour anomalies, the multi-lepton anomalies at the LHC, the Higgs-like excess at around 96 GeV, and anomalies in neutrino physics, astrophysics, cosmology, and cosmic rays. While the LHC promises up to 4 ab−1 of integrated luminosity and far-reaching physics programmes to unveil BSM physics, we consider the possibility that the latter could be tested with present data, but that systemic shortcomings of the experiments and their search strategies may preclude their discovery for several reasons, including: final states consisting in soft particles only, associated production processes, QCD-like final states, close-by SM resonances, and SUSY scenarios where no missing energy is produced. New search strategies could help to unveil the hidden BSM signatures, devised by making use of the CERN open data as a new testing ground. We discuss the CERN open data with its policies, challenges, and potential usefulness for the community. We showcase the example of the CMS collaboration, which is the only collaboration regularly releasing some of its data. We find it important to stress that individuals using public data for their own research does not imply competition with experimental efforts, but rather provides unique opportunities to give guidance for further BSM searches by the collaborations. Wide access to open data is paramount to fully exploit the LHCs potential

    Unveiling hidden physics at the LHC

    Get PDF
    The field of particle physics is at the crossroads. The discovery of a Higgs-like boson completed the Standard Model (SM), but the lacking observation of convincing resonances Beyond the SM (BSM) offers no guidance for the future of particle physics. On the other hand, the motivation for New Physics has not diminished and is, in fact, reinforced by several striking anomalous results in many experiments. Here we summarise the status of the most significant anomalies, including the most recent results for the flavour anomalies, the multi-lepton anomalies at the LHC, the Higgs-like excess at around 96 GeV, and anomalies in neutrino physics, astrophysics, cosmology, and cosmic rays. While the LHC promises up to 4 ab(-1) of integrated luminosity and far-reaching physics programmes to unveil BSM physics, we consider the possibility that the latter could be tested with present data, but that systemic shortcomings of the experiments and their search strategies may preclude their discovery for several reasons, including: final states consisting in soft particles only, associated production processes, QCD-like final states, close-by SM resonances, and SUSY scenarios where no missing energy is produced. New search strategies could help to unveil the hidden BSM signatures, devised by making use of the CERN open data as a new testing ground. We discuss the CERN open data with its policies, challenges, and potential usefulness for the community. We showcase the example of the CMS collaboration, which is the only collaboration regularly releasing some of its data. We find it important to stress that individuals using public data for their own research does not imply competition with experimental efforts, but rather provides unique opportunities to give guidance for further BSM searches by the collaborations. Wide access to open data is paramount to fully exploit the LHCs potential.Peer reviewe

    Status Report of the DPHEP Study Group: Towards a Global Effort for Sustainable Data Preservation in High Energy Physics

    Full text link
    Data from high-energy physics (HEP) experiments are collected with significant financial and human effort and are mostly unique. An inter-experimental study group on HEP data preservation and long-term analysis was convened as a panel of the International Committee for Future Accelerators (ICFA). The group was formed by large collider-based experiments and investigated the technical and organisational aspects of HEP data preservation. An intermediate report was released in November 2009 addressing the general issues of data preservation in HEP. This paper includes and extends the intermediate report. It provides an analysis of the research case for data preservation and a detailed description of the various projects at experiment, laboratory and international levels. In addition, the paper provides a concrete proposal for an international organisation in charge of the data management and policies in high-energy physics

    Identification and molecular mechanisms of the rapid tonicity-induced relocalization of the aquaporin 4 channel

    Get PDF
    The aquaporin family of integral membrane proteins is comprised of channels that mediate cellular water flow. Aquaporin 4 (AQP4) is highly expressed in the glial cells of the central nervous system and facilitates the osmotically-driven pathological brain swelling associated with stroke and traumatic brain injury. Here we show that AQP4 cell surface expression can be rapidly and reversibly regulated in response to changes of tonicity in primary cortical rat astrocytes and in transfected HEK293 cells. The translocation mechanism involves protein kinase A (PKA) activation, influx of extracellular calcium and activation of calmodulin. We identify five putative PKA phosphorylation sites and use site-directed mutagenesis to show that only phosphorylation at one of these sites, serine- 276, is necessary for the translocation response. We discuss our findings in the context of the identification of new therapeutic approaches to treating brain oedema
    • …
    corecore