92 research outputs found

    Elevated antibody to D-alanyl lipoteichoic acid indicates caries experience associated with fluoride and gingival health

    Get PDF
    BACKGROUND: Acidogenic, acid-tolerant bacteria induce dental caries and require D-alanyl glycerol lipoteichoic acid (D-alanyl LTA) on their cell surface. Because fluoride inhibits acid-mediated enamel demineralization, an elevated antibody response to D-alanyl LTA may indicate subjects with more acidogenic bacteria and, therefore, an association of DMFT with fluoride exposure and gingival health not apparent in low responders. METHODS: Cluster analysis was used to identify low antibody content. Within low and high responders (control and test subjects), the number of teeth that were decayed missing and filled (DMFT), or decayed only (DT) were regressed against fluoride exposure in the water supply and from dentrifice use. The latter was determined from gingival health: prevalences of plaque (PL) and bleeding on probing (BOP), and mean pocket depth (PD). Age was measured as a possible confounding cofactor. RESULTS: In 35 high responders, DMFT associated with length of exposure to fluoridated water (F score), PL and BOP (R(2) = 0.51, p < 0.001), whereas in 67 low D-ala-IgG responders, DMFT associated with PL, age, and PD (R(2) = 0.26, p < 0.001). BOP correlated strongly with number of 7 7 decayed teeth (DT) in 54 high responders (R(2) = 0.57, p < 0.001), but poorly in 97 low responders (R(2) = 0.12, p < 0.001). The strength of the PD association with DMFT, or of BOP with DT, in high responders significantly differed from that in low responders (p < 0.05). CONCLUSION: Caries associates with gingival health and fluoridated water exposure in high D-alanyl LTA antibody responders

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe

    Supernova neutrino burst detection with the Deep Underground Neutrino Experiment

    Get PDF
    The Deep Underground Neutrino Experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNE's ability to constrain the Îœe spectral parameters of the neutrino burst will be considered

    MeCP2 and the enigmatic organization of brain chromatin. Implications for depression and cocaine addiction

    Full text link

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 1: The LBNF and DUNE Projects

    Get PDF
    This document presents the Conceptual Design Report (CDR) put forward by an international neutrino community to pursue the Deep Underground Neutrino Experiment at the Long-Baseline Neutrino Facility (LBNF/DUNE), a groundbreaking science experiment for long-baseline neutrino oscillation studies and for neutrino astrophysics and nucleon decay searches. The DUNE far detector will be a very large modular liquid argon time-projection chamber (LArTPC) located deep underground, coupled to the LBNF multi-megawatt wide-band neutrino beam. DUNE will also have a high-resolution and high-precision near detector

    The Single-Phase ProtoDUNE Technical Design Report

    Get PDF
    ProtoDUNE-SP is the single-phase DUNE Far Detector prototype that is under construction and will be operated at the CERN Neutrino Platform (NP) starting in 2018. ProtoDUNE-SP, a crucial part of the DUNE effort towards the construction of the first DUNE 10-kt fiducial mass far detector module (17 kt total LAr mass), is a significant experiment in its own right. With a total liquid argon (LAr) mass of 0.77 kt, it represents the largest monolithic single-phase LArTPC detector to be built to date. It's technical design is given in this report

    Experiment Simulation Configurations Approximating DUNE TDR

    Get PDF
    The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-baseline neutrino oscillation experiment consisting of a high-power, broadband neutrino beam, a highly capable near detector located on site at Fermilab, in Batavia, Illinois, and a massive liquid argon time projection chamber (LArTPC) far detector located at the 4850L of Sanford Underground Research Facility in Lead, South Dakota. The long-baseline physics sensitivity calculations presented in the DUNE Physics TDR, and in a related physics paper, rely upon simulation of the neutrino beam line, simulation of neutrino interactions in the near and far detectors, fully automated event reconstruction and neutrino classification, and detailed implementation of systematic uncertainties. The purpose of this posting is to provide a simplified summary of the simulations that went into this analysis to the community, in order to facilitate phenomenological studies of long-baseline oscillation at DUNE. Simulated neutrino flux files and a GLoBES configuration describing the far detector reconstruction and selection performance are included as ancillary files to this posting. A simple analysis using these configurations in GLoBES produces sensitivity that is similar, but not identical, to the official DUNE sensitivity. DUNE welcomes those interested in performing phenomenological work as members of the collaboration, but also recognizes the benefit of making these configurations readily available to the wider community
    • 

    corecore