2,382 research outputs found

    A Quantitative Study of Java Software Buildability

    Full text link
    Researchers, students and practitioners often encounter a situation when the build process of a third-party software system fails. In this paper, we aim to confirm this observation present mainly as anecdotal evidence so far. Using a virtual environment simulating a programmer's one, we try to fully automatically build target archives from the source code of over 7,200 open source Java projects. We found that more than 38% of builds ended in failure. Build log analysis reveals the largest portion of errors are dependency-related. We also conduct an association study of factors affecting build success

    Time management displays for shuttle countdown

    Get PDF
    The Intelligent Launch Decision Support System project is developing a Time Management System (TMS) for the NASA Test Director (NTD) to use for time management during Shuttle terminal countdown. TMS is being developed in three phases: an information phase; a tool phase; and an advisor phase. The information phase is an integrated display (TMID) of firing room clocks, of graphic timelines with Ground Launch Sequencer events, and of constraints. The tool phase is a what-if spreadsheet (TMWI) for devising plans for resuming from unplanned hold situations. It is tied to information in TMID, propagates constraints forward and backward to complete unspecified values, and checks the plan against constraints. The advisor phase is a situation advisor (TMSA), which proactively suggests tactics. A concept prototype for TMSA is under development. The TMID is currently undergoing field testing. Displays for TMID and TMWI are described. Descriptions include organization, rationale for organization, implementation choices and constraints, and use by NTD

    Linking partial and quasi dynamical symmetries in rotational nuclei

    Get PDF
    Background: Quasi dynamical symmetries (QDS) and partial dynamical symmetries (PDS) play an important role in the understanding of complex systems. Up to now these symmetry concepts have been considered to be unrelated. Purpose: Establish a link between PDS and QDS and find an emperical manifestation. Methods: Quantum number fluctuations and the intrinsic state formalism are used within the framework of the interacting boson model of nuclei. Results: A previously unrecognized region of the parameter space of the interacting boson model that has both O(6) PDS (purity) and SU(3) QDS (coherence) in the ground band is established. Many rare-earth nuclei approximately satisfying both symmetry requirements are identified. Conclusions: PDS are more abundant than previously recognized and can lead to a QDS of an incompatible symmetry.Comment: 5 pages, 4 figures, 1 tabl

    Evolution of populations expanding on curved surfaces

    Get PDF
    The expansion of a population into new habitat is a transient process that leaves its footprints in the genetic composition of the expanding population. How the structure of the environment shapes the population front and the evolutionary dynamics during such a range expansion is little understood. Here, we investigate the evolutionary dynamics of populations consisting of many selectively neutral genotypes expanding on curved surfaces. Using a combination of individual-based off-lattice simulations, geometrical arguments, and lattice-based stepping-stone simulations, we characterise the effect of individual bumps on an otherwise flat surface. Compared to the case of a range expansion on a flat surface, we observe a transient relative increase, followed by a decrease, in neutral genetic diversity at the population front. In addition, we find that individuals at the sides of the bump have a dramatically increased expected number of descendants, while their neighbours closer to the bump's centre are far less lucky. Both observations can be explained using an analytical description of straight paths (geodesics) on the curved surface. Complementing previous studies of heterogeneous flat environments, the findings here build our understanding of how complex environments shape the evolutionary dynamics of expanding populations.Comment: This preprint has also been posted to http://www.biorxiv.org with doi: 10.1101/406280. Seven pages with 5 figures, plus an appendix containing 3 pages with 1 figur

    Lassoing saddle splay and the geometrical control of topological defects

    Full text link
    Systems with holes, such as colloidal handlebodies and toroidal droplets, have been studied in the nematic liquid crystal (NLC) 4-cyano-4'-pentylbiphenyl (5CB): both point and ring topological defects can occur within each hole and around the system, while conserving the system's overall topological charge. However, what has not been fully appreciated is the ability to manipulate the hole geometry with homeotropic (perpendicular) anchoring conditions to induce complex, saddle-like deformations. We exploit this by creating an array of holes suspended in an NLC cell with oriented planar (parallel) anchoring at the cell boundaries. We study both 5CB and a binary mixture of bicyclohexane derivatives (CCN-47 and CCN-55). Through simulations and experiments, we study how the bulk saddle deformations of each hole interact to create novel defect structures, including an array of disclination lines, reminiscent of those found in liquid crystal blue phases. The line locations are tunable via the NLC elastic constants, the cell geometry, and the size and spacing of holes in the array. This research lays the groundwork for the control of complex elastic deformations of varying length scales via geometrical cues in materials that are renowned in the display industry for their stability and easy manipulability.Comment: 9 pages, 7 figures, 1 supplementary figur

    Assessment of regional myocardial blood flow and regional fractional oxygen extraction in dogs, using 15O-water and 15O-hemoglobin

    Get PDF
    A new approach to the assessment of regional myocardial blood flow and fractional oxygen extraction has been developed using 15O-water (H2- 15O) and 15O-hemoglobin (15O-Hb). Bolus doses (1 mCi) of H2-15O and 15O- Hb were injected 10 minutes apart into the left main coronary artery of 12 normal dogs. Sequential images of regional myocardial tracer clearance were obtained over 5 minutes with a positron camera. Myocardial blood flow calculated from the monoexponential washout of H2- 15O after background correction was 78 +/- 6 (SE) ml/100 g per min. Functional images of regional blood flow in which the image of peak activity was divided by the integrated image of H2-15O washout were derived by computer processing. These images demonstrated homogeneous blood flow in the normal myocardium. Fractional myocardial O2 extraction was determined from an image of initial distribution of O2 used (obtained by extrapolating back to time zero the series of images obtained after 15O-Hb administration), divided by initial distribution of O2 delivered (obtained by back extrapolating H2-15O washout). These functional images showed uniform distribution of fractional O2 extraction in the normal myocardium. Thus, these studies show that regional myocardial blood flow and regional oxygen extraction can be measured simultaneously by sequential imaging after serial intracoronary injections of H2-15O and 15O-Hb

    Elasticity-Dependent Self-assembly of Micro-Templated Chromonic Liquid Crystal Films

    Get PDF
    We explore micropatterned director structures of aqueous lyotropic chromonic liquid crystal (LCLC) films created on square lattice cylindrical-micropost substrates. The structures are manipulated by modulating the LCLC mesophases and their elastic properties via concentration through drying. Nematic LCLC films exhibit preferred bistable alignment along the diagonals of the micropost lattice. Columnar LCLC films, dried from nematics, form two distinct director and defect configurations: a diagonally aligned director pattern with local squares of defects, and an off-diagonal configuration with zig-zag defects. The formation of these states appears to be tied to the relative splay and bend free energy costs of the initial nematic films. The observed nematic and columnar configurations are understood numerically using a Landau-de Gennes free energy model. Among other attributes, the work provide first examples of quasi-2D micropatterning of LC films in the columnar phase and lyotropic LC films in general, and it demonstrates alignment and configuration switching of typically difficult-to-align LCLC films via bulk elastic properties.Comment: 9 pages; 9 figures; accepted for publication in Soft Matte

    Elastocapillary driven assembly of particles at free-standing smectic-A films

    Full text link
    Colloidal particles at complex fluid interfaces and within films assemble to form ordered structures with high degrees of symmetry via interactions that include capillarity, elasticity, and other fields like electrostatic charge. Here we study microparticle interactions within free-standing smectic-A films, in which the elasticity arising from the director field distortion and capillary interactions arising from interface deformation compete to direct the assembly of motile particles. New colloidal assemblies and patterns, ranging from 1D chains to 2D aggregates, sensitive to the initial wetting conditions of particles at the smectic film, are reported. This work paves the way to exploiting LC interfaces as a means to direct spontaneously formed, reconfigurable, and optically active materials.Comment: 8 pages, 6 figures. Supplementary Materials: 3 pages, 3 figure
    corecore