The expansion of a population into new habitat is a transient process that
leaves its footprints in the genetic composition of the expanding population.
How the structure of the environment shapes the population front and the
evolutionary dynamics during such a range expansion is little understood. Here,
we investigate the evolutionary dynamics of populations consisting of many
selectively neutral genotypes expanding on curved surfaces. Using a combination
of individual-based off-lattice simulations, geometrical arguments, and
lattice-based stepping-stone simulations, we characterise the effect of
individual bumps on an otherwise flat surface. Compared to the case of a range
expansion on a flat surface, we observe a transient relative increase, followed
by a decrease, in neutral genetic diversity at the population front. In
addition, we find that individuals at the sides of the bump have a dramatically
increased expected number of descendants, while their neighbours closer to the
bump's centre are far less lucky. Both observations can be explained using an
analytical description of straight paths (geodesics) on the curved surface.
Complementing previous studies of heterogeneous flat environments, the findings
here build our understanding of how complex environments shape the evolutionary
dynamics of expanding populations.Comment: This preprint has also been posted to http://www.biorxiv.org with
doi: 10.1101/406280. Seven pages with 5 figures, plus an appendix containing
3 pages with 1 figur