59,665 research outputs found

    Correlation functions, Bell's inequalities and the fundamental conservation laws

    Full text link
    I derive the correlation function for a general theory of two-valued spin variables that satisfy the fundamental conservation law of angular momentum. The unique theory-independent correlation function is identical to the quantum mechanical correlation function. I prove that any theory of correlations of such discrete variables satisfying the fundamental conservation law of angular momentum violates the Bell's inequalities. Taken together with the Bell's theorem, this result has far reaching implications. No theory satisfying Einstein locality, reality in the EPR-Bell sense, and the validity of the conservation law can be constructed. Therefore, all local hidden variable theories are incompatible with fundamental symmetries and conservation laws. Bell's inequalities can be obeyed only by violating a conservation law. The implications for experiments on Bell's inequalities are obvious. The result provides new insight regarding entanglement, and its measures.Comment: LaTeX, 12pt, 11 pages, 2 figure

    Modelling for research on chemical control of mammals in New Zealand

    Get PDF
    Development of predictive formulae or qualitative statements about the probable outcome of control campaigns entails knowledge of bait quality and distribution, behaviour, vagaries of weather at the time of the control campaign, and other factors which govern the probability that the target animals will accept bait. This paper collates experience in recognising, estimating and using some of these variables for predicting the outcome of large-scale poisoning, and discusses possible approaches to the solution of some hard-core problems

    Spin dynamics in a superconductor / ferromagnet proximity system

    Get PDF
    The ferromagnetic resonance of thin sputtered Ni80Fe20 films grown on Nb is measured. By varying the temperature and thickness of the Nb the role of the superconductivity on the whole ferromagnetic layer in these heterostructures is explored. The change in the spin transport properties below the superconducting transition of the Nb is found to manifest itself in the Ni80Fe20 layer by a sharpening in the resonance of the ferromagnet, or a decrease in the effective Gilbert damping co-efficient. This dynamic proximity effect is in contrast to low frequency studies in these systems, where the effect of the superconductor is confined to a small region in the ferromagnet. We interpret this in terms of the spin pumping model.Comment: 4 pages, 4 figures, to be submitted for publicatio

    Sudden Critical Current Drops Induced in S/F Structures

    Full text link
    In the search for new physical properties of S/F structures, we have found that the superconductor critical current can be controlled by the domain state of the neighboring ferromagnet. The superconductor is a thin wire of thickness d_{s} ~ 2 xi_{S}. Nb/Co and Nb/Py (Permalloy Ni_{80}Fe_{20}) bilayer structures were grown with a significant magnetic anisotropy. Critical current measurements of Nb/Co structures with ferromagnet thickness d_{F} > 30nm show sudden drops in two very defined steps when the measurements are made along the hard axes direction (i.e. current track parallel to hard anisotropy axes direction). These drops disappear when they are made along the easy axis direction or when the ferromagnet thickness is below 30nm. The drops are accompanied by vortex flux flow. In addition magnetorestistance measurements close to Tc show a sharp increase near saturation fields of the ferromagnet. Similar results are reproduced in Nb/Py bilayer structure with the ferromagnet thickness d_{F} ~ 50nm along the easy anisotropy axes. These results are explained as being due to spontaneous vortex formation and flow induced by Bloch domain walls of the ferromagnet underneath. We argue these Bloch domain walls produce a 2D vortex-antivortex lattice structure.Comment: 6 pages, 6 figure

    Loophole-free Bell test based on local precertification of photon's presence

    Get PDF
    A loophole-free violation of Bell inequalities is of fundamental importance for demonstrating quantum nonlocality and long-distance device-independent secure communication. However, transmission losses represent a fundamental limitation for photonic loophole-free Bell tests. A local precertification of the presence of the photons immediately before the local measurements may solve this problem. We show that local precertification is feasible by integrating three current technologies: (i) enhanced single-photon down-conversion to locally create a flag photon, (ii) nanowire-based superconducting single-photon detectors for a fast flag detection, and (iii) superconducting transition-edge sensors to close the detection loophole. We carry out a precise space-time analysis of the proposed scheme, showing its viability and feasibility.Comment: REVTeX4, 7 Pages, 1 figur

    Constructing N-qubit entanglement monotones from anti-linear operators

    Full text link
    We present a method to construct entanglement measures for pure states of multipartite qubit systems. The key element of our approach is an antilinear operator that we call {\em comb} in reference to the {\em hairy-ball theorem}. For qubits (or spin 1/2) the combs are automatically invariant under SL(2,\CC). This implies that the {\em filters} obtained from the combs are entanglement monotones by construction. We give alternative formulae for the concurrence and the 3-tangle as expectation values of certain antilinear operators. As an application we discuss inequivalent types of genuine four-qubit entanglement.Comment: 5 pages, revtex4; more detailed illustration of the metho

    A Topos Foundation for Theories of Physics: IV. Categories of Systems

    Get PDF
    This paper is the fourth in a series whose goal is to develop a fundamentally new way of building theories of physics. The motivation comes from a desire to address certain deep issues that arise in the quantum theory of gravity. Our basic contention is that constructing a theory of physics is equivalent to finding a representation in a topos of a certain formal language that is attached to the system. Classical physics arises when the topos is the category of sets. Other types of theory employ a different topos. The previous papers in this series are concerned with implementing this programme for a single system. In the present paper, we turn to considering a collection of systems: in particular, we are interested in the relation between the topos representation for a composite system, and the representations for its constituents. We also study this problem for the disjoint sum of two systems. Our approach to these matters is to construct a category of systems and to find a topos representation of the entire category.Comment: 38 pages, no figure

    Characterizing the nonlocal correlations of particles that never interacted

    Full text link
    Quantum systems that have never interacted can become nonlocally correlated through a process called entanglement swapping. To characterize nonlocality in this context, we introduce local models where quantum systems that are initially uncorrelated are described by uncorrelated local variables. While a pair of maximally entangled qubits prepared in the usual way (i.e., emitted from a common source) requires a visibility close to 70% to violate a Bell inequality, we show that an entangled pair generated through entanglement swapping will already violate a Bell inequality for visibilities as low as 50% under our assumption.Comment: 5 pages, 2 figure

    Research on gravitational mass sensors Quarterly progress report no. 1, 15 Oct. 1964 - 14 Jan. 1965

    Get PDF
    Lunar orbiter and deep space probe gravitational sensor for determining mass distribution of moon and asteroid

    Pair plasma cushions in the hole-boring scenario

    Full text link
    Pulses from a 10 PW laser are predicted to produce large numbers of gamma-rays and electron-positron pairs on hitting a solid target. However, a pair plasma, if it accumulates in front of the target, may partially shield it from the pulse. Using stationary, one-dimensional solutions of the two-fluid (electron-positron) and Maxwell equations, including a classical radiation reaction term, we examine this effect in the hole-boring scenario. We find the collective effects of a pair plasma "cushion" substantially reduce the reflectivity, converting the absorbed flux into high-energy gamma-rays. There is also a modest increase in the laser intensity needed to achieve threshold for a non-linear pair cascade.Comment: 17 pages, 5 figures. Accepted for publication in Plasma Physics and Controlled Fusion. Typos corrected, reference update
    • …
    corecore