2,269 research outputs found

    Exploring the Case for Expanded Remote Texter Liability for Employers

    Get PDF
    In 2013, the New Jersey Appellate Court decided the potentially landmark case of Kubert v. Best, recognizing for the first time that a sender of a text may be held liable to an innocent third party injured in an automobile accident caused by a driver who was distracted by receiving the text. Other subsequent cases have both confirmed and limited the Kubert ruling. In this article, we explore possible further extensions of the Kubert ruling, anticipating that because of expanding employer liability for acts undertaken by their employees, the next step in the evolution of texting and driving law may likely hold employers liable for accidents caused by their employees whose employment-related texts to others result in accident and harm

    The JCMT Transient Survey: An Extraordinary Submillimetre Flare in the T Tauri Binary System JW 566

    Get PDF
    The binary T Tauri system JW 566 in the Orion Molecular Cloud underwent an energetic, short-lived flare observed at submillimetre wavelengths by the SCUBA-2 instrument on 26 November 2016 (UT). The emission faded by nearly 50% during the 31 minute integration. The simultaneous source fluxes averaged over the observation are 500 +/- 107 mJy/beam at 450 microns and 466 +/- 47 mJy/beam at 850 microns. The 850 micron flux corresponds to a radio luminosity of Lν=8×1019L_{\nu}=8\times10^{19} erg/s/Hz, approximately one order of magnitude brighter (in terms of νLν\nu L_{\nu}) than that of a flare of the young star GMR-A, detected in Orion in 2003 at 3mm. The event may be the most luminous known flare associated with a young stellar object and is also the first coronal flare discovered at sub-mm wavelengths. The spectral index between 450 microns and 850 microns of α=0.11\alpha = 0.11 is broadly consistent with non-thermal emission. The brightness temperature was in excess of 6×1046\times10^{4} K. We interpret this event to be a magnetic reconnection that energised charged particles to emit gyrosynchrotron/synchrotron radiation.Comment: Accepted in ApJ. 16 pages (single column), 6 figure

    The JCMT Transient Survey: An Extraordinary Submillimeter Flare in the T Tauri Binary System JW 566

    Get PDF
    © 2019 The American Astronomical Society. All rights reserved.The binary T Tauri system JW 566 in the Orion Molecular Cloud underwent an energetic, short-lived flare observed at submillimetre wavelengths by the SCUBA-2 instrument on 26 November 2016 (UT). The emission faded by nearly 50% during the 31 minute integration. The simultaneous source fluxes averaged over the observation are 500 +/- 107 mJy/beam at 450 microns and 466 +/- 47 mJy/beam at 850 microns. The 850 micron flux corresponds to a radio luminosity of Lν=8×1019L_{\nu}=8\times10^{19} erg/s/Hz, approximately one order of magnitude brighter (in terms of νLν\nu L_{\nu}) than that of a flare of the young star GMR-A, detected in Orion in 2003 at 3mm. The event may be the most luminous known flare associated with a young stellar object and is also the first coronal flare discovered at sub-mm wavelengths. The spectral index between 450 microns and 850 microns of α=0.11\alpha = 0.11 is broadly consistent with non-thermal emission. The brightness temperature was in excess of 6×1046\times10^{4} K. We interpret this event to be a magnetic reconnection that energised charged particles to emit gyrosynchrotron/synchrotron radiation.Peer reviewedFinal Published versio

    A Planet at 5 AU Around 55 Cancri

    Get PDF
    We report precise Doppler shift measurements of 55 Cancri (G8V) obtained from 1989 to 2002 at Lick Observatory. The velocities reveal evidence for an outer planetary companion to 55 Cancri orbiting at 5.5 AU. The velocities also confirm a second, inner planet at 0.11 AU. The outer planet is the first extrasolar planet found that orbits near or beyond the orbit of Jupiter. It was drawn from a sample of ~50 stars observed with sufficient duration and quality to detect a giant planet at 5 AU, implying that such planets are not rare. The properties of this jupiter analog may be compared directly to those of the Jovian planets in our Solar System. Its eccentricity is modest, e=0.16, compared with e=0.05 for both Jupiter and Saturn. Its mass is at least 4.0 jupiter masses (M sin i). The two planets do not perturb each other significantly. Moreover, a third planet of sub-Jupiter mass could easily survive in between these two known planets. Indeed a third periodicity remains in the velocity measurements with P = 44.3 d and a semi-amplitude of 13 m/s. This periodicity is caused either by a third planet at a=0.24 AU or by inhomogeneities on the stellar surface that rotates with period 42 d. The planet interpretation is more likely, as the stellar surface is quiet, exhibiting log(R'_{HK}) = -5.0 and brightness variations less than 1 millimag, and any hypothetical surface inhomogeneity would have to persist in longitude for 14 yr. Even with all three planets, an additional planet of terrestrial--mass could orbit stably at ~1 AU. The star 55 Cancri is apparently a normal, middle-aged main sequence star with a mass of 0.95 solar masses, rich in heavy elements ([Fe/H] = +0.27). This high metallicity raises the issue of the relationship between its age, rotation, and chromosphere.Comment: 47 pages, 4 tables, 12 figures, uses AASTE

    Overall survival of glasdegib in combination with low-dose cytarabine, azacitidine, and decitabine among adult patients with previously untreated AML: comparative effectiveness using simulated treatment comparisons.

    Get PDF
    BACKGROUND: Until recently, treatments for older patients with AML ineligible to receive intensive chemotherapies were limited to hypomethylating agents, low-dose cytarabine (LDAC), or clinical trials. In 2018, the FDA approved combination glasdegib (GLAS) plus LDAC based on Phase II results demonstrating improved overall survival (OS) versus LDAC alone in previously untreated AML. However, no randomized clinical trials have directly compared GLAS + LDAC with other AML treatments. OBJECTIVE: Using both indirect treatment comparison (ITC) and simulated treatment comparison (STC), which adjusts for baseline differences between trials, the comparative effectiveness of GLAS + LDAC was compared with hypomethylating agent azacitidine (AZA) or decitabine (DEC). METHODS: A systematic literature review identified published trials of AZA or DEC versus LDAC among older AML patients ineligible for high-intensity chemotherapy. In addition to standard and covariate-adjusted ITC, STC was performed following guidance from the NICE Decision Support Unit (DSU). Using individual patient data from the Phase II GLAS + LDAC study, population-specific OS hazard ratios (HR) for GLAS + LDAC versus AZA or DEC were compared. Furthermore, covariate-adjusted ITC (Cox multivariate models) and STC were repeated using GLAS + LDAC versus LDAC data propensity-weighted for within-trial mean cytogenetic risk. As this initial step was not specified in the DSU, results from this second method were compared to the first STC following DSU guidance only. RESULTS: Standard ITC and STC both demonstrated significantly improved OS for GLAS + LDAC versus either AZA or DEC. Adjusting for key covariates, STC stepwise exponential models demonstrated GLAS + LDAC superiority to both AZA (HR=0.424; 95% CI: 0.228, 0.789) and DEC (HR=0.505; 95% CI: 0.269, 0.949). These significant results held using full or step-wise approaches, following DSU guidance only or the weighted STC approach. CONCLUSION: Using ITC and STC, GLAS + LDAC demonstrated superior OS to AZA or DEC in an adult population with previously untreated AML for whom intensive chemotherapy is not an option

    Potential Savings of Harmonising Hospital and Community Formularies for Chronic Disease Medications Initiated in Hospital

    Get PDF
    Hospitals in Canada manage their formularies independently, yet many inpatients are discharged on medications which will be purchased through publicly-funded programs. We sought to determine how much public money could be saved on chronic medications if hospitals promoted the initiation of agents with the lowest outpatient formulary prices.We used administrative databases for the province of Ontario to identify patients initiated on a proton pump inhibitor (PPI), angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) following hospital admission from April 1(st) 2008-March 31(st) 2009. We assessed the cost to the Ontario Drug Benefit Program (ODB) over the year following initiation and determined the cost savings if prescriptions were substituted with the least expensive agent in each class.The cost for filling all PPI, ACE inhibitor and ARB prescriptions was 2.48million, 2.48 million, 968 thousand and 325thousandrespectively.Substitutingtheleastexpensiveagentcouldhavesaved325 thousand respectively. Substituting the least expensive agent could have saved 1.16 million (47%) for PPIs, 162thousand(17162 thousand (17%) for ACE inhibitors and 14 thousand (4%) for ARBs over the year following discharge.In a setting where outpatient prescriptions are publicly funded, harmonising outpatient formularies with inpatient therapeutic substitution resulted in modest cost savings and may be one way to control rising pharmaceutical costs

    Human ASPM participates in spindle organisation, spindle orientation and cytokinesis

    Get PDF
    Background Mutations in the Abnormal Spindle Microcephaly related gene (ASPM) are the commonest cause of autosomal recessive primary microcephaly (MCPH) a disorder characterised by a small brain and associated mental retardation. ASPM encodes a mitotic spindle pole associated protein. It is suggested that the MCPH phenotype arises from proliferation defects in neural progenitor cells (NPC). Results We show that ASPM is a microtubule minus end-associated protein that is recruited in a microtubule-dependent manner to the pericentriolar matrix (PCM) at the spindle poles during mitosis. ASPM siRNA reduces ASPM protein at the spindle poles in cultured U2OS cells and severely perturbs a number of aspects of mitosis, including the orientation of the mitotic spindle, the main determinant of developmental asymmetrical cell division. The majority of ASPM depleted mitotic cells fail to complete cytokinesis. In MCPH patient fibroblasts we show that a pathogenic ASPM splice site mutation results in the expression of a novel variant protein lacking a tripeptide motif, a minimal alteration that correlates with a dramatic decrease in ASPM spindle pole localisation. Moreover, expression of dominant-negative ASPM C-terminal fragments cause severe spindle assembly defects and cytokinesis failure in cultured cells. Conclusions These observations indicate that ASPM participates in spindle organisation, spindle positioning and cytokinesis in all dividing cells and that the extreme C-terminus of the protein is required for ASPM localisation and function. Our data supports the hypothesis that the MCPH phenotype caused by ASPM mutation is a consequence of mitotic aberrations during neurogenesis. We propose the effects of ASPM mutation are tolerated in somatic cells but have profound consequences for the symmetrical division of NPCs, due to the unusual morphology of these cells. This antagonises the early expansion of the progenitor pool that underpins cortical neurogenesis, causing the MCPH phenotype

    Taking the Measure of the Universe: Precision Astrometry with SIM PlanetQuest

    Get PDF
    Precision astrometry at microarcsecond accuracy has application to a wide range of astrophysical problems. This paper is a study of the science questions that can be addressed using an instrument that delivers parallaxes at about 4 microarcsec on targets as faint as V = 20, differential accuracy of 0.6 microarcsec on bright targets, and with flexible scheduling. The science topics are drawn primarily from the Team Key Projects, selected in 2000, for the Space Interferometry Mission PlanetQuest (SIM PlanetQuest). We use the capabilities of this mission to illustrate the importance of the next level of astrometric precision in modern astrophysics. SIM PlanetQuest is currently in the detailed design phase, having completed all of the enabling technologies needed for the flight instrument in 2005. It will be the first space-based long baseline Michelson interferometer designed for precision astrometry. SIM will contribute strongly to many astronomical fields including stellar and galactic astrophysics, planetary systems around nearby stars, and the study of quasar and AGN nuclei. SIM will search for planets with masses as small as an Earth orbiting in the `habitable zone' around the nearest stars using differential astrometry, and could discover many dozen if Earth-like planets are common. It will be the most capable instrument for detecting planets around young stars, thereby providing insights into how planetary systems are born and how they evolve with time. SIM will observe significant numbers of very high- and low-mass stars, providing stellar masses to 1%, the accuracy needed to challenge physical models. Using precision proper motion measurements, SIM will probe the galactic mass distribution and the formation and evolution of the Galactic halo. (abridged)Comment: 54 pages, 28 figures, uses emulateapj. Submitted to PAS

    Submillimeter Array Observations of the RX J1633.9-2442 Transition Disk: Evidence for Multiple Planets in the Making

    Get PDF
    We present continuum high resolution Submillimeter Array (SMA) observations of the transition disk object RX J1633.9-2442, which is located in the Ophiuchus molecular cloud and has recently been identified as a likely site of ongoing giant planet formation. The observations were taken at 340 GHz (880 micron) with the SMA in its most extended configuration, resulting in an angular resolution of 0.3" (35 AU at the distance of the target). We find that the disk is highly inclined (i ~50 deg) and has an inner cavity ~25 AU in radius, which is clearly resolved by our observations. We simultaneously model the entire optical to millimeter wavelength spectral energy distribution (SED) and SMA visibilities of RX J1633.9-2442 in order to constrain the structure of its disk. We find that an empty cavity ~25 AU in radius is inconsistent with the excess emission observed at 12, 22, and 24 micron. Instead, the mid-IR excess can be modeled by either a narrow, optically thick ring at ~10 AU or an optically thin region extending from ~7 AU to ~25 AU. The inner disk (r < 5 AU) is mostly depleted of small dust grains as attested by the lack of detectable near-IR excess. We also present deep Keck aperture masking observations in the near-IR, which rule out the presence of a companion up to 500 times fainter than the primary star (in K-band) for projected separations in the 5-20 AU range. We argue that the complex structure of the RX J1633.9-2442 disk is best explained by multiple planets embedded within the disk. We also suggest that the properties and incidence of objects such as RX J1633.9-2442, T Cha, and LkCa 15 (and those of the companions recently identified to these two latter objects) are most consistent with the runaway gas accretion phase of the core accretion model, when giant planets gain their envelopes and suddenly become massive enough to open wide gaps in the disk.Comment: Accepted for publication in Ap
    corecore