632 research outputs found

    Solar-like oscillations in massive main-sequence stars. I. Asteroseismic signatures of the driving and damping regions

    Full text link
    Motivated by the recent detection of stochastically excited modes in the massive star V1449 Aql (Belkacem et al., 2009b), already known to be a β\beta Cephei, we theoretically investigate the driving by turbulent convection. By using a full non-adiabatic computation of the damping rates, together with a computation of the energy injection rates, we provide an estimate of the amplitudes of modes excited by both the convective region induced by the iron opacity bump and the convective core. Despite uncertainties in the dynamical properties of such convective regions, we demonstrate that both are able to efficiently excite pp modes above the CoRoT observational threshold and the solar amplitudes. In addition, we emphasise the potential asteroseismic diagnostics provided by each convective region, which we hope will help to identify the one responsible for solar-like oscillations, and to give constraints on this convective zone. A forthcoming work will be dedicated to an extended investigation of the likelihood of solar-like oscillations across the Hertzsprung-Russell diagram.Comment: 9 pages, 14 figures, accepter in A&

    Stochastic excitation of non-radial modes I. High-angular-degree p modes

    Full text link
    Turbulent motions in stellar convection zones generate acoustic energy, part of which is then supplied to normal modes of the star. Their amplitudes result from a balance between the efficiencies of excitation and damping processes in the convection zones. We develop a formalism that provides the excitation rates of non-radial global modes excited by turbulent convection. As a first application, we estimate the impact of non-radial effects on excitation rates and amplitudes of high-angular-degree modes which are observed on the Sun. A model of stochastic excitation by turbulent convection has been developed to compute the excitation rates, and it has been successfully applied to solar radial modes (Samadi & Goupil 2001, Belkacem et al. 2006b). We generalize this approach to the case of non-radial global modes. This enables us to estimate the energy supplied to high-(\ell) acoustic modes. Qualitative arguments as well as numerical calculations are used to illustrate the results. We find that non-radial effects for pp modes are non-negligible: - for high-nn modes (i.e. typically n>3n > 3) and for high values of \ell; the power supplied to the oscillations depends on the mode inertia. - for low-nn modes, independent of the value of \ell, the excitation is dominated by the non-diagonal components of the Reynolds stress term. We carried out a numerical investigation of high-\ell pp modes and we find that the validity of the present formalism is limited to <500\ell < 500 due to the spatial separation of scale assumption. Thus, a model for very high-\ell pp-mode excitation rates calls for further theoretical developments, however the formalism is valid for solar gg modes, which will be investigated in a paper in preparation.Comment: 12 pages, accepted for publication in A&

    Intermediate mass excess of dilepton production in heavy ion collisions at BEVALAC energies

    Get PDF
    Dielectron mass spectra are examined for various nuclear reactions recently measured by the DLS collaboration. A detailed description is given of all dilepton channels included in the transport model UrQMD 1.0, i.e. Dalitz decays of &#960;, &#951;, &#969;, &#942; mesons and of the (1232) resonance, direct decays of vector mesons and pn bremsstrahlung. The microscopic calculations reproduce data for light systems fairly well, but tend to underestimate the data in pp at high energies and in pd at low energies. These conventional sources, however, cannot explain the recently reported enhancement for nucleus-nucleus collisions in the mass region 0.15GeV &#8804; Me+e- &#8804; 0.6GeV. Chiral scaling and &#969; meson broadening in the medium are investigated as a source of this mass excess. They also cannot explain the recent DLS data

    Theoretical power spectra of mixed modes in low mass red giant stars

    Full text link
    CoRoT and Kepler observations of red giant stars revealed very rich spectra of non-radial solar-like oscillations. Of particular interest was the detection of mixed modes that exhibit significant amplitude, both in the core and at the surface of the stars. It opens the possibility of probing the internal structure from their inner-most layers up to their surface along their evolution on the red giant branch as well as on the red-clump. Our objective is primarily to provide physical insight into the physical mechanism responsible for mixed-modes amplitudes and lifetimes. Subsequently, we aim at understanding the evolution and structure of red giants spectra along with their evolution. The study of energetic aspects of these oscillations is also of great importance to predict the mode parameters in the power spectrum. Non-adiabatic computations, including a time-dependent treatment of convection, are performed and provide the lifetimes of radial and non-radial mixed modes. We then combine these mode lifetimes and inertias with a stochastic excitation model that gives us their heights in the power spectra. For stars representative of CoRoT and Kepler observations, we show under which circumstances mixed modes have heights comparable to radial ones. We stress the importance of the radiative damping in the determination of the height of mixed modes. Finally, we derive an estimate for the height ratio between a g-type and a p-type mode. This can thus be used as a first estimate of the detectability of mixed-modes

    The underlying physical meaning of the νmaxνc\nu_{\rm max}-\nu_{\rm c} relation

    Full text link
    Asteroseismology of stars that exhibit solar-like oscillations are enjoying a growing interest with the wealth of observational results obtained with the CoRoT and Kepler missions. In this framework, scaling laws between asteroseismic quantities and stellar parameters are becoming essential tools to study a rich variety of stars. However, the physical underlying mechanisms of those scaling laws are still poorly known. Our objective is to provide a theoretical basis for the scaling between the frequency of the maximum in the power spectrum (νmax\nu_{\rm max}) of solar-like oscillations and the cut-off frequency (νc\nu_{\rm c}). Using the SoHO GOLF observations together with theoretical considerations, we first confirm that the maximum of the height in oscillation power spectrum is determined by the so-called \emph{plateau} of the damping rates. The physical origin of the plateau can be traced to the destabilizing effect of the Lagrangian perturbation of entropy in the upper-most layers which becomes important when the modal period and the local thermal relaxation time-scale are comparable. Based on this analysis, we then find a linear relation between νmax\nu_{\rm max} and νc\nu_{\rm c}, with a coefficient that depends on the ratio of the Mach number of the exciting turbulence to the third power to the mixing-length parameter.Comment: 8 pages, 11 figures. Accepted in A&

    Selective bond-breaking in formic acid by dissociative electron attachment.

    Get PDF
    We report the results of a joint experimental and theoretical study of dissociative electron attachment to formic acid (HCOOH) in the 6-9 eV region, where H- fragment ions are a dominant product. Breaking of the C-H and O-H bonds is distinguished experimentally by deuteration of either site. We show that in this region H- ions can be produced by formation of two or possibly three Feshbach resonance (doubly-excited anion) states, one of which leads to either C-H or O-H bond scission, while the other can only produce formyloxyl radicals by O-H bond scission. Comparison of experimental and theoretical angular distributions of the anion fragment allows the elucidation of state specific pathways to dissociation

    Control of the power quality for a DFIG powered by multilevel inverters

    Get PDF
    This paper treats the modeling, and the control of a wind power system based on a doubly fed induction generator DFIG, the stator is directly connected to the grid, while the rotor is powered by multilevel inverters. In order to get a decoupled system of controlfor an independently transits of active and reactive power, a vector control method based on stator flux orientation SFOC is considered: Direct vector control based on PI controllers. Cascaded H-bridge CHBI multilevel inverters are used in the rotor circuit to study its effect on supply power quality. All simulation models are built in MATLAB/Simulink software. Results and waveforms clearly show the effectiveness of vector control strategy. Finally, performances of the system will tested and compared for each levels of inverter

    Solar-like oscillation amplitudes and line-widths as a probe for turbulent convection in stars

    Get PDF
    Excitation of solar-like oscillations is attributed to turbulent convection and takes place at the upper-most part of the outer convective zones. Amplitudes of these oscillations depend on the efficiency of the excitation processes as well as on the properties of turbulent convection. We present past and recent improvements on the modeling of those processes. We show how the mode amplitudes and mode line-widths can bring information about the turbulence in the specific cases of the Sun and Alpha Cen A.Comment: 9 pages ; 3 figures ; invited talk given during the Symposium no. 239 "Convection in Astrophysics", International Astronomical Union., held 21-25 August, 2006 in Prague, Czech Republi
    corecore