7,781 research outputs found

    Search for vertical stratification of metals in atmospheres of blue horizontal-branch stars

    Get PDF
    The observed abundance peculiarities of many chemical species relative to the expected cluster metallicity in blue horizontal-branch (BHB) stars presumably appear as a result of atomic diffusion in the photosphere. The slow rotation (typically vsini<v\sin{i}< 10 km s1^{-1}) of BHB stars with effective temperatures Teff>T_{\rm eff}> 11,500 K supports this idea since the diffusion mechanism is only effective in a stable stellar atmosphere. In this work we search for observational evidence of vertical chemical stratification in the atmospheres of six hot BHB stars: B84, B267 and B279 in M15 and WF2-2541, WF4-3085 and WF4-3485 in M13. We undertake an abundance stratification analysis of the stellar atmospheres of the aforementioned stars, based on acquired Keck HIRES spectra. We have found from our numerical simulations that three stars (B267, B279 and WF2-2541) show clear signatures of the vertical stratification of iron whose abundance increases toward the lower atmosphere, while the other two stars (B84 and WF4-3485) do not. For WF4-3085 the iron stratification results are inconclusive. B267 also shows a signature of titanium stratification. Our estimates for radial velocity, vsiniv\sin{i} and overall iron, titanium and phosphorus abundances agree with previously published data for these stars after taking the measurement errors into account. The results support the hypothesis regarding the efficiency of atomic diffusion in the stellar atmospheres of BHB stars with Teff>T_{\rm eff}> 11,500 K.Comment: 8 pages, 12 figures, accepted for publication in Astronomy and Astrophysic

    Stratification of the elements in the atmospheres of blue horizontal-branch stars

    Full text link
    Blue horizontal-branch (BHB) stars with TeffT_{\rm eff} approximately larger than 11500 K show several observational anomalies. In globular clusters, they exhibit low rotational velocities, abundance anomalies (as compared to cluster abundances), photometric jumps and gaps and spectroscopic gravities lower than predicted by canonical models. It is commonly believed that the low rotational velocities of these stars permit atomic diffusion to be efficient in their atmosphere thereby causing the observed anomalies. Recent detections of vertical stratification of iron (and some other chemical elements) in several BHB stars concur with this framework. In this paper, improved model atmospheres that include the vertical stratification of the elements are applied to BHB stars to verify if they can explain their observational anomalies. The results from theoretical model atmospheres are consistent with the photometric jumps and gaps observed for BHB stars in globular clusters. It is found that iron stratification in the theoretical models and that obtained from observations have similar tendancies. Our results also show that the spectroscopic gravities obtained while using chemically homogeneous model atmospheres to fit observations are underestimated. These results significantly strengthen the belief that atomic diffusion is responsible for these BHB-star anomalies.Comment: 6 pages, 6 figure

    Chemical and kinematical properties of BSSs and HB stars in NGC 6397

    Full text link
    We used three sets of high-resolution spectra acquired with the multifiber facility FLAMES at the Very Large Telescope of the European Southern Observatory to investigate the chemical and kinematical properties of a sample of 42 horizontal branch (HB) stars, 18 Blue Straggler Stars (BSSs) and 86 main sequence turn-off and sub-giant branch stars in the nearby globular cluster NGC 6397. We measured rotational velocities and Fe, O and Mg abundances. All the unevolved stars in our sample turn out to have low rotational velocites (v sin i< 10\kms), while HB stars and BSSs show a broad distribution, with values ranging from 0 to 70 \kms. For HB stars with T<10500 K there is a clear temperature-oxygen anti-correlation, that can be understood if the star position along the HB is mainly determined by the He content. The hottest BSSs and HB stars (with temperatures T>8200 K and T> 10500 K, respectively) also show significant deviations in their iron abundance with respect to the cluster metallicity (as traced by the unevolved stars, [Fe/H]=-2.12). While similar chemical patterns have been already observed in other hot HB stars, this is the first evidence ever collected for BSSs. We interprete these abundance anomalies as due to the metal radiative levitation, occurring in stars with shallow or no convective envelopes

    WDX-Analysis of the New Superconductors RO(1-x)F(x)FeAs and Its Consequences on the Electronic Phase Diagram

    Full text link
    Polycrystalline samples of RO1-xFxFeAs (0 < x < 0.25) (R = La, Sm, Gd) were investigated by wavelength-dispersive X-ray spectroscopy (WDX) in the electron microscope to determine the composition of the samples, in particular the fluorine content. It was found that the measured fluorine content can deviate considerably from the initial weight. In the lanthanum compound LaO1-xFxFeAs, we found good agreement mainly for x > 0.05, but for x < 0.05 the fluorine hardly goes into the sample. For the samarium compound we measured less than half the fluorine in the sample as initially weighed at all fluorine concentrations. These measured values are taken into account when drawing the electronic phase diagrams of LaO1-xFxFeAs and SmO1-xFxFeAs. This leads to a more consistent picture of both of the diagrams in comparison to the plot of the initial weight.Comment: 5 pages, 4 figures, Accepted for publication in Journal of Superconductivity and Novel Magnetis

    Chapter Development of Josephson voltage standards

    Get PDF
    Neurology & clinical neurophysiolog

    An Overview of the Rotational Behavior of Metal--Poor Stars

    Full text link
    The present paper describes the behavior of the rotational velocity in metal--poor stars ([Fe/H]<-0.5 dex) in different evolutionary stages, based on Vsini values from the literature. Our sample is comprised of stars in the field and some Galactic globular clusters, including stars on the main sequence, the red giant branch (RGB), and the horizontal branch (HB). The metal--poor stars are, mainly, slow rotators, and their Vsini distribution along the HR diagram is quite homogeneous. Nevertheless, a few moderate to high values of Vsini are found in stars located on the main sequence and on the HB. We show that the overall distribution of Vsini values is basically independent of metallicity for the stars in our sample. In particular, the fast-rotating main sequence stars in our sample present similar rotation rates as their metal-rich counterparts, suggesting that some of them may actually be fairly young, in spite of their low metallicity, or else that at least some of them would be better classified as blue straggler stars. We do not find significant evidence of evolution in Vsini values as a function of position on the RGB; in particular, we do not confirm previous suggestions that stars close to the RGB tip rotate faster than their less evolved counterparts. While the presence of fast rotators among moderately cool blue HB stars has been suggested to be due to angular momentum transport from a stellar core that has retained significant angular momentum during its prior evolution, we find that any such transport mechanisms must likely operate very fast as the star arrives on the zero-age HB (ZAHB), since we do not find a link between evolution off the ZAHB and Vsini values. We present an extensive tabulation of all quantities discussed in this paper, including rotation velocities, temperatures, gravitieComment: 22 pages, 10 figure

    Pr magnetism and its interplay with the Fe spin density wave in PrFeAsO

    Full text link
    We have studied the magnetism of the Pr3+ ions in PrFeAsO_1-xF_x (x = 0; 0.15) and its interaction with the Fe magnetic order (for x = 0). Specific heat data confirm the presence of a first excited crystal electric field (CEF) level around 3.5 meV in the undoped compound PrFeAsO. This finding is in agreement with recent neutron scattering experiments. The doped compound is found to have a much lower first CEF splitting of about 2.0 meV. The Pr ordering in PrFeAsO gives rise to large anomalies in the specific heat and the thermal expansion coefficient. In addition, a field-induced transition is found at low temperatures that is most pronounced for the magnetostriction coefficient. This transition, which is absent in the doped compound, is attributed to a reversal of the Fe spin canting as the antiferromagnetic Pr order is destroyed by the external magnetic field.Comment: 8 pages, 6 figure

    Vertical abundance stratification in the blue horizontal branch star HD135485

    Get PDF
    It is commonly believed that the observed overabundances of many chemical species relative to the expected cluster metallicity in blue horizontal branch (BHB) stars appear as a result of atomic diffusion in the photosphere. The slow rotation of BHB stars (with T_eff > 11,500K), typically v sin{i} < 10 km/s, is consistent with this idea. In this work we search for observational evidence of vertical chemical stratification in the atmosphere of HD135485. If this evidence exists, it will demonstrate the importance of atomic diffusion processes in the atmospheres of BHB stars. We undertake an extensive abundance stratification analysis of the atmosphere of HD135485, based on recently acquired high resolution and S/N CFHT ESPaDOnS spectra and a McDonald-CE spectrum. Our numerical simulations show that nitrogen and sulfur reveal signatures of vertical abundance stratification in the stellar atmosphere. It appears that the abundances of these elements increase toward the upper atmosphere. This fact cannot be explained by the influence of microturbulent velocity, because oxygen, carbon, neon, argon, titanium and chromium do not show similar behavior and their abundances remain constant throughout the atmosphere. It seems that the iron abundance may increase marginally toward the lower atmosphere. This is the first demonstration of vertical abundance stratification of metals in a BHB star.Comment: 8 pages, 5 figures, accepted to A&
    corecore