70 research outputs found

    Assessing the influence of rice roots and root exudates on nitrogen mineralization using a novel protocol

    Get PDF
    Classical nitrogen (N) mineralization experiments are done using uncropped soil, thus completely neglecting the influence of roots and root exudates. Therefore, experiments were conducted at two field sites in Bangladesh during ‘boro’ season (winter rice), using two rice cultivars (BRRI Dhan 29 and BINA Dhan6) to investigate the influence of rice roots and root exudates on N mineralization. Rice cultivars were transplanted in three replicated plots maintaining 25 x 15cm spacing along with three replicated uncropped plots as control. A novel method was used to identify the most suitable location to assess N mineralization in soil having actively growing rice plants. For this purpose, soil samples were collected from three locations in soil namely; 1) rhizosphere (0cm, at the rhizosphere), 2) middle of the two plants (7.5cm apart from rhizosphere) and 3) middle of two rows (12.5cm apart from rhizosphere). There was significant stimulatory effect of rice roots and root exudates on N mineralization at both filed sites. Significant influences of rice varieties were also observed, with BINA Dhan 6 having greater influence on N mineralization than BRRI Dhan 29. Sampling location also had a significant effect on measured N mineralization. The highest stimulatory effects of rice roots and root exudates were recorded when soil was sampled from rhizosphere. Sampling between the plants and between the rows had similar effects. In conclusion, rice roots and root exudates had a large influence on N mineralization and the best sampling location to determine the effects of actively growing rice roots and root exudates on N mineralization, was the rice rhizosphere

    Shifts in soil organic matter composition following treatment with sodium hypochlorite and hydrofluoric acid

    Get PDF
    A renewed interest in chemical fractionation of soil organic matter (SOM) originates from the premise that it enables to isolate labile SOM from SOM protected through mineral binding and recalcitrant SOM. Both selective removal of labile non-bound SOM through oxidation or hydrolysis as well as selective removal of minerals and attached SOM are often applied. Molecular-level SOM characterization by means of temperature resolved Pyrolysis-Field Ionization Mass Spectroscopy analysis (Py-FIMS) was used here as an approach to obtain insight into the fate of SOMuponwet chemical treatment with regard to composition and thermal stability. The applied sequential chemical treatment with 6% NaOCl and 10% HF yielded similar sizes in stable SOM fractions between sandy semi-native heathland and cultivated cropland soil pairs (i.e. NaOCl resistant OC: 12.3–15.0 g C kg−1 and NaOCl+HF resistant OC: 2.6–5.3 g C kg−1). Py-FIMS spectra of bulk SOM in both heathland–cropland soil pairs were dominated by signals assigned to lipids, alkylaromatics and sterols. Difference spectra and thermograms showed selective loss of signals from sterols, lignin dimers and thermolabile lipids. This matches advancing SOM decomposition as derived from previously reported gradients in SOM composition as decomposition proceeds fromplantmaterial over particulate organicmatter (OM) to SOMin silt and clay particle sizes. However, increased ion intensity attributed to carbohydrates, peptides and short-chained lipids after NaOCl treatment indicates that biologically labile SOM components were also enriched, and they may possibly have been protected through mineral binding or encapsulation in macromolecular OMstructures. Subsequent HF treatment yielded increased volatilization in the thermostable region for mass signals tentatively assigned to phenols and lignin monomers and of heterocyclic N-containing compounds and thermostable alkylaromatics. The resistance to chemical treatment of the latter two components matches with their hypothesized structural function in macro OM molecules. However, even for the sites investigated here, with a very similar soil texture, climate, land-use, drainage and contents of pedogenic oxides, contrasting and not readily explainable results were found for other SOMconstituents. Therefore, chemical fractionations seemto yield very site specific and less distinct patterns and this study demonstrated that derivation of useful information regarding SOM stabilization mechanisms from such experiments is by no means straightforward

    Combined application of foliar fertilizer with basal NPK enhances mulberry leaf yield and silkworm cocoon productivity in calcareous soil

    Get PDF
    One of the reason of low Mulberry plant (Morus spp.) production in calcareous soils is due to the low efficiency of soil applied fertilizers. Thus, in search of an alternative efficient fertilizer application method, field experiments were conducted at Bangladesh Sericulture Research and Training Institute (BSTRI), Rajshahi, Bangladesh in consecutive two years for achieving higher productivity of mulberry leaf and silkworm cocoon, Bombyx mori L. Four fertilizer management practices such as Control, Basal, Basal + Urea (B+U) and Basal + Foliar fertilizer (FF) were followed for mulberry plant production. Result showed that 3 times FF spray with basal application of NPK (305 kg N, 105 kg K and 66 kg P ha-1 yr-1 in 4 splits doses enhances biochemical constituents in mulberry leaf, leaf yield, silkworm growth as well as cocoon parameters. This study concluded that this treatment was regarded as the best fertilizer management practice which increased the mulberry leaf and cocoon productivity by 17.0 and 52.8 %, respectively over the control. Leaf quality of mulberry in terms of moisture, crude protein, soluble carbohydrate, reducing sugar and total mineral was increased by 14.0, 57.6, 85.8, 140.4 and 60.5 %, respectively in comparison with the control. Thus, foliar spray of foliar fertilizer had a good impact on sericultural productivity

    Antibacterial and antibiotic potentiating capabilities of extracts isolated from Burkillanthus malaccensis, Diospyros hasseltii and Cleisthanthus bracteosus against human pathogenic bacteria

    Get PDF
    Antibiotics which once a boon in medicine and saved millions of lives are now facing an ever-growing menace of antibacterial resistance, which desperately needs new antibacterial drugs which are innovative in chemistry and mode of action. For many years, the world has turned to natural plants with antibacterial properties to combat antibiotic resistance. On that basis, we aimed to identify plants with antibacterial and antibiotic potentiating properties. Seventeen different extracts of 3 plants namely Burkillanthus malaccensis, Diospyros hasseltii and Cleisthanthus bracteosus were tested against multi-drug resistant Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Methicillinresistant Staphylococcus aureus (MRSA) and methicillin-susceptible Staphylococcus aureus (MSSA). Antibacterial activity of hexane, methanol and chloroform extracts of bark, seed, fruit, flesh and leaves from these plants were tested using, disk diffusion assay, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. Antibiotic potentiating capabilities were tested using time-kill assay. B. malaccensis fruit chloroform extract showed the biggest zone of inhibition against MRSA (13.00±0.0 mm) but C. bracteosus bark methanol extract showed the biggest inhibition zone against MSSA (15.33±0.6 mm). Interestingly, bark methanol extract of C. bracteosus was active against MRSA (8.7±0.6 mm), MSSA (7.7±0.6 mm) (Gram-positive) and A. baumannii (7.7±0.6 mm) (Gram-negative). Overall, the leaf methanol and bark methanol extract of C. bracteosus warrants further investigation such as compound isolation and mechanism of action for validating its therapeutic use as antibiotic potentiator importantly against MRSA and A. baumannii

    Cavity-enhanced direct frequency comb spectroscopy

    Full text link
    Cavity-enhanced direct frequency comb spectroscopy combines broad spectral bandwidth, high spectral resolution, precise frequency calibration, and ultrahigh detection sensitivity, all in one experimental platform based on an optical frequency comb interacting with a high-finesse optical cavity. Precise control of the optical frequency comb allows highly efficient, coherent coupling of individual comb components with corresponding resonant modes of the high-finesse cavity. The long cavity lifetime dramatically enhances the effective interaction between the light field and intracavity matter, increasing the sensitivity for measurement of optical losses by a factor that is on the order of the cavity finesse. The use of low-dispersion mirrors permits almost the entire spectral bandwidth of the frequency comb to be employed for detection, covering a range of ~10% of the actual optical frequency. The light transmitted from the cavity is spectrally resolved to provide a multitude of detection channels with spectral resolutions ranging from a several gigahertz to hundreds of kilohertz. In this review we will discuss the principle of cavity-enhanced direct frequency comb spectroscopy and the various implementations of such systems. In particular, we discuss several types of UV, optical, and IR frequency comb sources and optical cavity designs that can be used for specific spectroscopic applications. We present several cavity-comb coupling methods to take advantage of the broad spectral bandwidth and narrow spectral components of a frequency comb. Finally, we present a series of experimental measurements on trace gas detections, human breath analysis, and characterization of cold molecular beams.Comment: 36 pages, 27 figure

    Track D Social Science, Human Rights and Political Science

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138414/1/jia218442.pd

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Evolutionary characterization of lung adenocarcinoma morphology in TRACERx

    Get PDF
    Lung adenocarcinomas (LUADs) display a broad histological spectrum from low-grade lepidic tumors through to mid-grade acinar and papillary and high-grade solid, cribriform and micropapillary tumors. How morphology reflects tumor evolution and disease progression is poorly understood. Whole-exome sequencing data generated from 805 primary tumor regions and 121 paired metastatic samples across 248 LUADs from the TRACERx 421 cohort, together with RNA-sequencing data from 463 primary tumor regions, were integrated with detailed whole-tumor and regional histopathological analysis. Tumors with predominantly high-grade patterns showed increased chromosomal complexity, with higher burden of loss of heterozygosity and subclonal somatic copy number alterations. Individual regions in predominantly high-grade pattern tumors exhibited higher proliferation and lower clonal diversity, potentially reflecting large recent subclonal expansions. Co-occurrence of truncal loss of chromosomes 3p and 3q was enriched in predominantly low-/mid-grade tumors, while purely undifferentiated solid-pattern tumors had a higher frequency of truncal arm or focal 3q gains and SMARCA4 gene alterations compared with mixed-pattern tumors with a solid component, suggesting distinct evolutionary trajectories. Clonal evolution analysis revealed that tumors tend to evolve toward higher-grade patterns. The presence of micropapillary pattern and ‘tumor spread through air spaces’ were associated with intrathoracic recurrence, in contrast to the presence of solid/cribriform patterns, necrosis and preoperative circulating tumor DNA detection, which were associated with extra-thoracic recurrence. These data provide insights into the relationship between LUAD morphology, the underlying evolutionary genomic landscape, and clinical and anatomical relapse risk

    The artificial intelligence-based model ANORAK improves histopathological grading of lung adenocarcinoma

    Get PDF
    The introduction of the International Association for the Study of Lung Cancer grading system has furthered interest in histopathological grading for risk stratification in lung adenocarcinoma. Complex morphology and high intratumoral heterogeneity present challenges to pathologists, prompting the development of artificial intelligence (AI) methods. Here we developed ANORAK (pyrAmid pooliNg crOss stReam Attention networK), encoding multiresolution inputs with an attention mechanism, to delineate growth patterns from hematoxylin and eosin-stained slides. In 1,372 lung adenocarcinomas across four independent cohorts, AI-based grading was prognostic of disease-free survival, and further assisted pathologists by consistently improving prognostication in stage I tumors. Tumors with discrepant patterns between AI and pathologists had notably higher intratumoral heterogeneity. Furthermore, ANORAK facilitates the morphological and spatial assessment of the acinar pattern, capturing acinus variations with pattern transition. Collectively, our AI method enabled the precision quantification and morphology investigation of growth patterns, reflecting intratumoral histological transitions in lung adenocarcinoma
    • 

    corecore