8 research outputs found

    Novel design of a high efficiency multi-bed active magnetic regenerator heat pump

    No full text
    Supporting data for publication 'Novel design of a high efficiency multi-bed active magnetic regenerator heat pump" submitted to the International Journal of Refrigeration (authors are awaiting DOI)The videos show the operation of the novel magnetocaloric heat pump called the MagQueen, which has been developed by DTU Energy.The Excel sheet summarizes the experimental output parameters for the performance data presented in the publication. All data were measured continuously after reaching steady-state conditions, and the data were averaged over a time span of 600 s.</div

    Nouvelle conception d’une pompe Ă  chaleur Ă  rĂ©gĂ©nĂ©rateur magnĂ©tique actif Ă  lits multiples et Ă  haut rendement

    Full text link
    The design of a rotary active magnetic regenerator heat pump device with a multi-bed concept is presented. Important design features are the rotating two-pole magnet assembly, the laminated iron ring, the 13 fixed tapered regenerator beds, and the dynamically adjustable parallel flow circuit. The optimized magnet design was developed with optimally shaped segments and optimum remanence for the desired magnetic field distribution oscillating between 0 and 1.44 T in the air gap. The iron ring was laminated to reduce the eddy currents, allowing the device to run at cycle frequencies up to 3 Hz. The design of the regenerator housing was optimized with respect to parasitic losses and even flow distribution in both directions. Employing 3.4 kg of La(Fe,Mn,Si)13Hy (CALORIVAC HS) refrigerant and at a hot reservoir temperature of 295 K and a cycle frequency of 0.5 Hz, the heat pump achieved a maximum second-law efficiency of 20.6 %, while providing a heating load of 340 W with a heating COP of 6.7 at a 10.3 K span. The COP values presented only consider the magnetic power and ideal pump power delivered to the AMR, neglecting the pump efficiency. At 1.2 Hz, the device produced a maximum heating power of 950 W while maintaining a 5.6 K span, resulting in a heating coefficient of performance and second-law efficiency of 7.0 and 11.6 %, respectively. The performance demonstrated in this paper could be an important milestone in the development of future magnetocaloric devices

    Key Parameters of Tumor Epitope Immunogenicity Revealed Through a Consortium Approach Improve Neoantigen Prediction

    No full text
    Many approaches to identify therapeutically relevant neoantigens couple tumor sequencing with bioinformatic algorithms and inferred rules of tumor epitope immunogenicity. However, there are no reference data to compare these approaches, and the parameters governing tumor epitope immunogenicity remain unclear. Here, we assembled a global consortium wherein each participant predicted immunogenic epitopes from shared tumor sequencing data. 608 epitopes were subsequently assessed for T cell binding in patient-matched samples. By integrating peptide features associated with presentation and recognition, we developed a model of tumor epitope immunogenicity that filtered out 98% of non-immunogenic peptides with a precision above 0.70. Pipelines prioritizing model features had superior performance, and pipeline alterations leveraging them improved prediction performance. These findings were validated in an independent cohort of 310 epitopes prioritized from tumor sequencing data and assessed for T cell binding. This data resource enables identification of parameters underlying effective anti-tumor immunity and is available to the research community

    Key Parameters of Tumor Epitope Immunogenicity Revealed Through a Consortium Approach Improve Neoantigen Prediction

    No full text
    Many approaches to identify therapeutically relevant neoantigens couple tumor sequencing with bioinformatic algorithms and inferred rules of tumor epitope immunogenicity. However, there are no reference data to compare these approaches, and the parameters governing tumor epitope immunogenicity remain unclear. Here, we assembled a global consortium wherein each participant predicted immunogenic epitopes from shared tumor sequencing data. 608 epitopes were subsequently assessed for T cell binding in patient-matched samples. By integrating peptide features associated with presentation and recognition, we developed a model of tumor epitope immunogenicity that filtered out 98% of non-immunogenic peptides with a precision above 0.70. Pipelines prioritizing model features had superior performance, and pipeline alterations leveraging them improved prediction performance. These findings were validated in an independent cohort of 310 epitopes prioritized from tumor sequencing data and assessed for T cell binding. This data resource enables identification of parameters underlying effective anti-tumor immunity and is available to the research community

    Intramyocardial haemorrhage after acute myocardial infarction

    No full text

    Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19

    No full text
    BackgroundWe previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15-20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in similar to 80% of cases.MethodsWe report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded.ResultsNo gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5-528.7, P=1.1x10(-4)) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR=3.70[95%CI 1.3-8.2], P=2.1x10(-4)). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR=19.65[95%CI 2.1-2635.4], P=3.4x10(-3)), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR=4.40[9%CI 2.3-8.4], P=7.7x10(-8)). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD]=43.3 [20.3] years) than the other patients (56.0 [17.3] years; P=1.68x10(-5)).ConclusionsRare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old

    7. Literatur

    No full text
    corecore