70 research outputs found

    Pathfinders: Realizing Reconciliation Through Lessons Learned

    Get PDF
    In 2016, a group of Indigenous and non-Indigenous scholars came together to imagine a better world through a bold approach to education at the Werklund School of Education. This imagining took the form of a newly designed graduate pathway program which focused on meaningfully and actively responding to Canada’s Truth and Reconciliation Commission’s (TRC) (2015) 94 Calls to Action. Central to the design of our program is the inclusion of a capstone service-learning project that asks graduate students to bring together Indigenous and non-Indigenous groups in designing and delivering projects of mutual benefit. In sharing insights from their respective learning journeys, our students reveal the complexities and challenges of reconciliatory work but also its many rewards. Further, in sharing these courageous acts, we hope to inspire others to take action

    Public safety personnel feedback from a remote trial of Goal Management Training for post-traumatic stress during Covid-19

    Get PDF
    Purpose: This paper explores participants’ perspectives on the acceptability, utility, and perceived therapeutic effects of a virtual group cognitive remediation program, Goal Management Training (GMT)™, during the COVID-19 pandemic. The advantages and drawbacks of these groups are considered as part of an online research study protocol exploring cognitive remediation among first responders (police, firefighters, paramedics, emergency dispatchers, corrections and parole officers, and nurses) who have been impacted by trauma. Methods: We qualitatively examined the results of an anonymous participant feedback survey collected from 20 first responders who took part in the first round of our online therapy groups. A thematic analysis approach was taken to highlight key themes and recommendations. Results: Survey results indicated that participants found our online protocol effective in terms of group facilitation, the utility of online platforms, and perceived therapeutic effects. Further, some participants preferred participating online versus attending in-person groups. Conclusion: This early data suggests that providing virtual options for research and treatment among trauma-impacted public safety personnel may increase accessibility and overall participation among this population

    Painting the Nation:Examining the Intersection Between Politics and the Visual Arts Market in Emerging Economies

    Get PDF
    Politics and art have throughout history, intersected in diverse and complex ways. Ideologies and political systems have used the arts to create a certain image and, depending on the form of government this has varied from clear-cut state propaganda, to patronage, to more indirect arms-length funding procedures. Therefore, artists working within the macro-level socio-political context cannot help but be influenced, inspired and sometimes restricted by these policies and political influences. This article examines the contemporary art markets of two emerging, Socialist economies to investigate the relationship between state pol-itics and the contemporary visual arts market. We argue that the respective governments and art worlds are trying to construct a brand narrative for their nations, but that these discourses are often at cross-purposes. In doing so, we illustrate that it is impos-sible to separate a consideration of the artwork from the macro-level context in which it is produced, distributed, and consumed

    Early ultrasound surveillance of newly-created haemodialysis arteriovenous fistula

    Get PDF
    IntroductionWe assess if ultrasound surveillance of newly-created arteriovenous fistulas (AVFs) can predict nonmaturation sufficiently reliably to justify randomized controlled trial (RCT) evaluation of ultrasound-directed salvage intervention.MethodsConsenting adults underwent blinded fortnightly ultrasound scanning of their AVF after creation, with scan characteristics that predicted AVF nonmaturation identified by logistic regression modeling.ResultsOf 333 AVFs created, 65.8% matured by 10 weeks. Serial scanning revealed that maturation occurred rapidly, whereas consistently lower fistula flow rates and venous diameters were observed in those that did not mature. Wrist and elbow AVF nonmaturation could be optimally modeled from week 4 ultrasound parameters alone, but with only moderate positive predictive values (PPVs) (wrist, 60.6% [95% confidence interval, CI: 43.9–77.3]; elbow, 66.7% [48.9–84.4]). Moreover, 40 (70.2%) of the 57 AVFs that thrombosed by week 10 had already failed by the week 4 scan, thus limiting the potential of salvage procedures initiated by that scan’s findings to alter overall maturation rates. Modeling of the early ultrasound characteristics could also predict primary patency failure at 6 months; however, that model performed poorly at predicting assisted primary failure (those AVFs that failed despite a salvage attempt), partly because patency of at-risk AVFs was maintained by successful salvage performed without recourse to the early scan data.ConclusionEarly ultrasound surveillance may predict fistula maturation, but is likely, at best, to result in only very modest improvements in fistula patency. Power calculations suggest that an impractically large number of participants (>1700) would be required for formal RCT evaluation

    Anaesthetic Impairment of Immune Function Is Mediated via GABAA Receptors

    Get PDF
    GABA(A) receptors are members of the Cys-loop family of neurotransmitter receptors, proteins which are responsible for fast synaptic transmission, and are the site of action of wide range of drugs. Recent work has shown that Cys-loop receptors are present on immune cells, but their physiological roles and the effects of drugs that modify their function in the innate immune system are currently unclear. We are interested in how and why anaesthetics increase infections in intensive care patients; a serious problem as more than 50% of patients with severe sepsis will die. As many anaesthetics act via GABA(A) receptors, the aim of this study was to determine if these receptors are present on immune cells, and could play a role in immunocompromising patients.We demonstrate, using RT-PCR, that monocytes express GABA(A) receptors constructed of α1, α4, β2, γ1 and/or δ subunits. Whole cell patch clamp electrophysiological studies show that GABA can activate these receptors, resulting in the opening of a chloride-selective channel; activation is inhibited by the GABA(A) receptor antagonists bicuculline and picrotoxin, but not enhanced by the positive modulator diazepam. The anaesthetic drugs propofol and thiopental, which can act via GABA(A) receptors, impaired monocyte function in classic immunological chemotaxis and phagocytosis assays, an effect reversed by bicuculline and picrotoxin.Our results show that functional GABA(A) receptors are present on monocytes with properties similar to CNS GABA(A) receptors. The functional data provide a possible explanation as to why chronic propofol and thiopental administration can increase the risk of infection in critically ill patients: their action on GABA(A) receptors inhibits normal monocyte behaviour. The data also suggest a potential solution: monocyte GABA(A) receptors are insensitive to diazepam, thus the use of benzodiazepines as an alternative anesthetising agent may be advantageous where infection is a life threatening problem

    Opsonic phagocytosis in chronic obstructive pulmonary disease is enhanced by Nrf2 agonists

    Get PDF
    Rationale: Previous studies have identified defects in bacterial phagocytosis by alveolar macrophages (AM) in patients with chronic obstructive pulmonary disease (COPD) but the mechanisms and clinical consequences remain incompletely defined. Objectives: To examine the effect of COPD on AM phagocytic responses and identify the mechanisms, clinical consequences and potential for therapeutic manipulation of these defects. Methods: We isolated alveolar macrophages (AM) and monocyte-derived macrophages (MDM) from a cohort of COPD patients and controls within the MRC COPD-MAP consortium and measured phagocytosis of bacteria in relation to opsonic conditions and clinical features. Measurements and Main Results: COPD AM and MDM have impaired phagocytosis of S. pneumoniae. COPD AM have a selective defect in uptake of opsonized bacteria, despite the presence of anti-pneumococcal antibodies in bronchoalveolar lavage, not observed in MDM or healthy donor’s AM. AM defects in phagocytosis in COPD are significantly associated with exacerbation frequency, isolation of pathogenic bacteria and health related quality of life scores. Bacterial binding and initial intracellular killing of opsonized bacteria in COPD AM was not reduced. COPD AM have reduced transcriptional responses to opsonized bacteria, including cellular stress responses that include transcriptional modules involving antioxidant defenses and Nrf2-regualted genes. Agonists of the cytoprotective transcription factor Nrf2 (sulforaphane and Compound) reverse defects in phagocytosis of S. pneumoniae and non-type able Haemophilus influenzae by COPD. Conclusions: Patients with COPD have clinically relevant defects in opsonic phagocytosis by AM, associated with impaired transcriptional responses to cellular stress, which are reversed by therapeutic targeting with Nrf2 agonists

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
    corecore