12 research outputs found

    Dietary Intake at 9 Years and Subsequent Body Mass Index in Adolescent Boys and Girls : A Study of Monozygotic Twin Pairs

    Get PDF
    There is a lack of evidence pointing to specific dietary elements related to weight gain and obesity prevention in childhood and adulthood. Dietary intake and obesity are both inherited and culturally transmitted, but most prospective studies on the association between diet and weight status do not take genetics into consideration. The objective of this study was to document the association between dietary intake at 9 years and subsequent Body Mass Index (BMI) in adolescent monozygotic boy and girl twin pairs. This research used data from 152 twin pairs. Dietary data were collected from two 24-hour-recall interviews with a parent and the child aged 9 years. Height and weight were obtained when the twins were aged 9, 12, 13, and 14 years. Intrapair variability analysis was performed to identify dietary elements related to BMI changes in subsequent years. BMI-discordant monozygotic twin pairs were also identified to analyze the dietary constituents that may have generated the discordance. After eliminating potential confounding genetic factors, pre-adolescent boys who ate fewer grain products and fruit and consumed more high-fat meat and milk had higher BMIs during adolescence; pre-adolescent girls who consumed more grain products and high-fat meat and milk had higher BMIs during adolescence. Energy intake (EI) at 9 years was not related to BMI in subsequent years. Our study suggests that messages and interventions directed at obesity prevention could take advantage of sex-specific designs and, eventually, genetic information.Peer reviewe

    Evolution of the ferric reductase domain (FRD) superfamily: modularity, functional diversification, and signature motifs.

    Get PDF
    A heme-containing transmembrane ferric reductase domain (FRD) is found in bacterial and eukaryotic protein families, including ferric reductases (FRE), and NADPH oxidases (NOX). The aim of this study was to understand the phylogeny of the FRD superfamily. Bacteria contain FRD proteins consisting only of the ferric reductase domain, such as YedZ and short bFRE proteins. Full length FRE and NOX enzymes are mostly found in eukaryotic cells and all possess a dehydrogenase domain, allowing them to catalyze electron transfer from cytosolic NADPH to extracellular metal ions (FRE) or oxygen (NOX). Metazoa possess YedZ-related STEAP proteins, possibly derived from bacteria through horizontal gene transfer. Phylogenetic analyses suggests that FRE enzymes appeared early in evolution, followed by a transition towards EF-hand containing NOX enzymes (NOX5- and DUOX-like). An ancestral gene of the NOX(1-4) family probably lost the EF-hands and new regulatory mechanisms of increasing complexity evolved in this clade. Two signature motifs were identified: NOX enzymes are distinguished from FRE enzymes through a four amino acid motif spanning from transmembrane domain 3 (TM3) to TM4, and YedZ/STEAP proteins are identified by the replacement of the first canonical heme-spanning histidine by a highly conserved arginine. The FRD superfamily most likely originated in bacteria
    corecore