12 research outputs found

    Calpain activity is generally elevated during transformation but has oncogene-specific biological functions

    No full text
    Several oncogene and tumor-suppressor gene products are known substrates for the calpain family of cysteine proteases, and calpain is required for transformation by v-src and tumor invasion. Thus, we have now addressed whether calpain is generally associated with transformation and how calpain contributes to oncogene function. Our results demonstrate that calpain activity is enhanced upon transformation induced by the v-Src, v-Jun, v-Myc, k-Ras, and v-Fos oncoproteins. Furthermore, elevated calpain activity commonly promotes focal adhesion remodelling, disruption of actin cytoskeleton, morphological transformation, and cell migration, although proteolysis of target substrates (such as focal adhesion kinase, talin, and spectrin) is differently specified by individual oncoproteins. Interestingly, v-Fos differs from other common oncoproteins in not requiring calpain activity for actin/adhesion remodelling or migration of v-Fos transformed cells. However, anchorage-independent growth of all transformed cells is sensitive to calpain inhibition. In addition, elevated calpain activity contributes to oncogene-induced apoptosis associated with transformation by v-Myc. Taken together, these studies demonstrate that calpain activity is necessary for full cellular transformation induced by common oncoproteins, but has distinct roles in oncogenic events induced by individual transforming proteins. Thus, targeting calpain activity may represent a useful general strategy for interfering with activated proto-oncogenes in cancer cells

    Functional Characterization and Localization of the Aspergillus nidulans Formin SEPA

    No full text
    Formins are a family of multidomain scaffold proteins involved in actin-dependent morphogenetic events. In Aspergillus nidulans, the formin SEPA participates in two actin-mediated processes, septum formation and polarized growth. In this study, we use a new null mutant to demonstrate that SEPA is required for the formation of actin rings at septation sites. In addition, we find that a functional SEPA::GFP fusion protein localizes simultaneously to septation sites and hyphal tips, and that SEPA colocalizes with actin at each site. Using live imaging, we show that SEPA localization at septation sites and hyphal tips is dynamic. Notably, at septation sites, SEPA forms a ring that constricts as the septum is deposited. Moreover, we demonstrate that actin filaments are required to maintain the proper localization pattern of SEPA, and that the amino-terminal half of SEPA is sufficient for localization at septation sites and hyphal tips. In contrast, only localization at septation sites is affected by loss of the sepH gene product. We propose that specific morphological cues activate common molecular pathways to direct SEPA localization to the appropriate morphogenetic site
    corecore