36 research outputs found

    Cleveland Police Report, December 11, 1954, Detective Pete Decker describes the questioning of Sam Sheppard on July 31, 1954 in the Cuyahoga County Jail

    Get PDF
    On July 31, 1954, Cleveland Police Detective Pete J. Becker was told by Detective Harold Lockwood that Sam was refusing to answer questions relative to the night of the murder. Becker was told by Lockwood that he and Detective Lonchar should try to make Sam as angry as possible in his questioning and then Lockwood would relieve them and use a different interview approach

    Cleveland Police Report, December 11, 1954, Detective Pete Decker describes the questioning of Sam Sheppard on July 31, 1954 in the Cuyahoga County Jail

    Get PDF
    On July 31, 1954, Cleveland Police Detective Pete J. Becker was told by Detective Harold Lockwood that Sam was refusing to answer questions relative to the night of the murder. Becker was told by Lockwood that he and Detective Lonchar should try to make Sam as angry as possible in his questioning and then Lockwood would relieve them and use a different interview approach

    Efficacy of prenatal ultrasonography in diagnosing urogenital developmental anomalies in newborns.

    Get PDF
    BACKGROUND: Showing a prevalence rate of 0.5-0.8%, urogenital malformations discovered in newborns is regarded relatively common. The aim of this study is to examine the efficacy of ultrasound diagnostics in detecting developmental disorders in the urogenital system. METHODS: We have processed the prenatal sonographic and postnatal clinical details of 175 urogenital abnormalities in 140 newborns delivered with urogenital malformation according to EUROCAT recommendations over a 5-year period between 2006 and 2010. The patients were divided into three groups; Group 1: prenatal sonography and postnatal examinations yielded fully identical results. Group 2: postnatally detected urogenital changes were partially discovered in prenatal investigations. Group 3: prenatal sonography failed to detect the urogenital malformation identified in postnatal examinations. Urogenital changes representing part of certain multiple disorders associated with chromosomal aberration were investigated separately. RESULTS: Prenatal sonographic diagnosis and postnatal results completely coincided in 45%, i.e. 63/140 of cases in newborns delivered with urogenital developmental disorders. In 34/140 cases (24%), discovery was partial, while in 43/140 patients (31%), no urogenital malformation was detected prenatally. No associated malformations were observed in 108 cases, in 57 of which (53%), the results of prenatal ultrasonography and postnatal examinations showed complete coincidence. Prenatally, urogenital changes were found in 11 patients (10%), whereas no urogenital disorders were diagnosed in 40 cases (37%) by investigations prior to birth. Urogenital disorders were found to represent part of multiple malformations in a total of 28 cases as follows: prenatal diagnosis of urogenital malformation and the findings of postnatal examinations completely coincided in three patients (11%), partial coincidence was found in 22 newborns (79%) and in another three patients (11%), the disorder was not detected prenatally. In four newborns, chromosomal aberration was associated with the urogenital disorder; 45,X karyotype was detected in two patients, trisomy 9 and trisomy 18 were found in one case each. CONCLUSION: In approximately half of the cases, postnatally diagnosed abnormalities coincided with the prenatally discovered fetal urogenital developmental disorders. The results have confirmed that ultrasonography plays an important role in diagnosing urogenital malformations but it fails to detect all of the urogenital developmental abnormalities

    Recent visible light and metal free strategies in [2+2] and [4+2] photocycloadditions

    Full text link
    When aiming to synthesize molecules with elevated molecular complexity starting from relatively simple starting materials, photochemical transformations represent an open avenue to circumvent analogous multistep procedures. Specifically, light-mediated cycloadditions remain as powerful tools to generate new bonds begotten from non-very intuitive disconnections, that alternative thermal protocols would not offer. In response to the current trend in both industrial and academic research pointing towards green and sustainable processes, several strategies that meet these requirements are currently available in the literature. This Minireview summarizes [2+2] and [4+2] photocycloadditions that do not require the use of metal photocatalysts by means of alternative strategies. It is segmented according to the cycloaddition type in order to give the reader a friendly approach and we primarily focus on the most recent developments in the field carried out using visible light, a general overview of the mechanism in each case is offered as wellFinancial support was provided by the European Research Council (ERC-CoG, Contract Number: 647550), the Spanish Government (RTI2018-095038-B-I00), the ‘Comunidad de Madrid’ and European Structural Funds (S2018/NMT-4367). R. I. R thanks Fundación Carolina for a graduate fellowshi

    The consolidated European synthesis of CO2 emissions and removals for the European Union and United Kingdom:1990-2020

    Get PDF
    Quantification of land surface-atmosphere fluxes of carbon dioxide (CO2) and their trends and uncertainties is essential for monitoring progress of the EU27+UK bloc as it strives to meet ambitious targets determined by both international agreements and internal regulation. This study provides a consolidated synthesis of fossil sources (CO2 fossil) and natural (including formally managed ecosystems) sources and sinks over land (CO2 land) using bottom-up (BU) and top-down (TD) approaches for the European Union and United Kingdom (EU27+UK), updating earlier syntheses (Petrescu et al., 2020, 2021). Given the wide scope of the work and the variety of approaches involved, this study aims to answer essential questions identified in the previous syntheses and understand the differences between datasets, particularly for poorly characterized fluxes from managed and unmanaged ecosystems. The work integrates updated emission inventory data, process-based model results, data-driven categorical model results, and inverse modeling estimates, extending the previous period 1990-2018 to the year 2020 to the extent possible. BU and TD products are compared with the European national greenhouse gas inventory (NGHGI) reported by parties including the year 2019 under the United Nations Framework Convention on Climate Change (UNFCCC). The uncertainties of the EU27+UK NGHGI were evaluated using the standard deviation reported by the EU member states following the guidelines of the Intergovernmental Panel on Climate Change (IPCC) and harmonized by gap-filling procedures. Variation in estimates produced with other methods, such as atmospheric inversion models (TD) or spatially disaggregated inventory datasets (BU), originate from within-model uncertainty related to parameterization as well as structural differences between models. By comparing the NGHGI with other approaches, key sources of differences between estimates arise primarily in activities. System boundaries and emission categories create differences in CO2 fossil datasets, while different land use definitions for reporting emissions from land use, land use change, and forestry (LULUCF) activities result in differences for CO2 land. The latter has important consequences for atmospheric inversions, leading to inversions reporting stronger sinks in vegetation and soils than are reported by the NGHGI. For CO2 fossil emissions, after harmonizing estimates based on common activities and selecting the most recent year available for all datasets, the UNFCCC NGHGI for the EU27+UK accounts for 926g±g13gTggCgyr-1, while eight other BU sources report a mean value of 948 [937,961]gTggCgyr-1 (25th, 75th percentiles). The sole top-down inversion of fossil emissions currently available accounts for 875gTggC in this same year, a value outside the uncertainty of both the NGHGI and bottom-up ensemble estimates and for which uncertainty estimates are not currently available. For the net CO2 land fluxes, during the most recent 5-year period including the NGHGI estimates, the NGHGI accounted for -91g±g32gTggCgyr-1, while six other BU approaches reported a mean sink of -62 [-117,-49]gTggCgyr-1, and a 15-member ensemble of dynamic global vegetation models (DGVMs) reported -69 [-152,-5]gTggCgyr-1. The 5-year mean of three TD regional ensembles combined with one non-ensemble inversion of -73gTggCgyr-1 has a slightly smaller spread (0th-100th percentiles of [-135,+45]gTggCgyr-1), and it was calculated after removing net land-atmosphere CO2 fluxes caused by lateral transport of carbon (crop trade, wood trade, river transport, and net uptake from inland water bodies), resulting in increased agreement with the NGHGI and bottom-up approaches. Results at the category level (Forest Land, Cropland, Grassland) generally show good agreement between the NGHGI and category-specific models, but results for DGVMs are mixed. Overall, for both CO2 fossil and net CO2 land fluxes, we find that current independent approaches are consistent with the NGHGI at the scale of the EU27+UK. We conclude that CO2 emissions from fossil sources have decreased over the past 30 years in the EU27+UK, while land fluxes are relatively stable: positive or negative trends larger (smaller) than 0.07 (-0.61)gTggCgyr-2 can be ruled out for the NGHGI. In addition, a gap on the order of 1000gTggCgyr-1 between CO2 fossil emissions and net CO2 uptake by the land exists regardless of the type of approach (NGHGI, TD, BU), falling well outside all available estimates of uncertainties. However, uncertainties in top-down approaches to estimate CO2 fossil emissions remain uncharacterized and are likely substantial, in addition to known uncertainties in top-down estimates of the land fluxes. The data used to plot the figures are available at 10.5281/zenodo.8148461 (McGrath et al., 2023).</p

    The consolidated European synthesis of CO2 emissions and removals for the European Union and United Kingdom: 1990–2020

    Get PDF
    Quantification of land surface–atmosphere fluxes of carbon dioxide (CO2) and their trends and uncertainties is essential for monitoring progress of the EU27+UK bloc as it strives to meet ambitious targets determined by both international agreements and internal regulation. This study provides a consolidated synthesis of fossil sources (CO2 fossil) and natural (including formally managed ecosystems) sources and sinks over land (CO2 land) using bottom-up (BU) and top-down (TD) approaches for the European Union and United Kingdom (EU27+UK), updating earlier syntheses (Petrescu et al., 2020, 2021). Given the wide scope of the work and the variety of approaches involved, this study aims to answer essential questions identified in the previous syntheses and understand the differences between datasets, particularly for poorly characterized fluxes from managed and unmanaged ecosystems. The work integrates updated emission inventory data, process-based model results, data-driven categorical model results, and inverse modeling estimates, extending the previous period 1990–2018 to the year 2020 to the extent possible. BU and TD products are compared with the European national greenhouse gas inventory (NGHGI) reported by parties including the year 2019 under the United Nations Framework Convention on Climate Change (UNFCCC). The uncertainties of the EU27+UK NGHGI were evaluated using the standard deviation reported by the EU member states following the guidelines of the Intergovernmental Panel on Climate Change (IPCC) and harmonized by gap-filling procedures. Variation in estimates produced with other methods, such as atmospheric inversion models (TD) or spatially disaggregated inventory datasets (BU), originate from within-model uncertainty related to parameterization as well as structural differences between models. By comparing the NGHGI with other approaches, key sources of differences between estimates arise primarily in activities. System boundaries and emission categories create differences in CO2 fossil datasets, while different land use definitions for reporting emissions from land use, land use change, and forestry (LULUCF) activities result in differences for CO2 land. The latter has important consequences for atmospheric inversions, leading to inversions reporting stronger sinks in vegetation and soils than are reported by the NGHGI. For CO2 fossil emissions, after harmonizing estimates based on common activities and selecting the most recent year available for all datasets, the UNFCCC NGHGI for the EU27+UK accounts for 926 ± 13 Tg C yr−1, while eight other BU sources report a mean value of 948 [937,961] Tg C yr−1 (25th, 75th percentiles). The sole top-down inversion of fossil emissions currently available accounts for 875 Tg C in this same year, a value outside the uncertainty of both the NGHGI and bottom-up ensemble estimates and for which uncertainty estimates are not currently available. For the net CO2 land fluxes, during the most recent 5-year period including the NGHGI estimates, the NGHGI accounted for −91 ± 32 Tg C yr−1, while six other BU approaches reported a mean sink of −62 [] Tg C yr−1, and a 15-member ensemble of dynamic global vegetation models (DGVMs) reported −69 [] Tg C yr−1. The 5-year mean of three TD regional ensembles combined with one non-ensemble inversion of −73 Tg C yr−1 has a slightly smaller spread (0th–100th percentiles of [] Tg C yr−1), and it was calculated after removing net land–atmosphere CO2 fluxes caused by lateral transport of carbon (crop trade, wood trade, river transport, and net uptake from inland water bodies), resulting in increased agreement with the NGHGI and bottom-up approaches. Results at the category level (Forest Land, Cropland, Grassland) generally show good agreement between the NGHGI and category-specific models, but results for DGVMs are mixed. Overall, for both CO2 fossil and net CO2 land fluxes, we find that current independent approaches are consistent with the NGHGI at the scale of the EU27+UK. We conclude that CO2 emissions from fossil sources have decreased over the past 30 years in the EU27+UK, while land fluxes are relatively stable: positive or negative trends larger (smaller) than 0.07 (−0.61) Tg C yr−2 can be ruled out for the NGHGI. In addition, a gap on the order of 1000 Tg C yr−1 between CO2 fossil emissions and net CO2 uptake by the land exists regardless of the type of approach (NGHGI, TD, BU), falling well outside all available estimates of uncertainties. However, uncertainties in top-down approaches to estimate CO2 fossil emissions remain uncharacterized and are likely substantial, in addition to known uncertainties in top-down estimates of the land fluxes. The data used to plot the figures are available at https://doi.org/10.5281/zenodo.8148461 (McGrath et al., 2023)

    Second state of the art database : Deliverable D3.2

    No full text
    The state of the art database addresses the data demand by the different modeling groups in order to provide data for forcing, calibration and evaluation of the models. We were already able to summarize most relevant datasets in deliverable D3.1 (the first version of the database deliverable). Therefore, this new version only resumes previous datasets and describes in details the new ones (since D3.1 was submitted). New datasets concern coastal ocean fluxes and biomass and to a certain level land use/land cover data and XCO2. For these datasets only the methodology was provided in the initial deliverable. Some of the other datasets got also replaced by better or more refined data (i.e., climate data).The available data of coastal ocean carbon fluxes cover all European shelf areas in a 6 hour time step for the period 1998-2018. Given the need for the VERIFY modeling groups, a monthly resolution was picked for analysis. The land use/land cover data are provided over an extended period (now 1900-2015). Additionally changes in the approach are reported. The climate data are provided in a finer resolution, which also affects the calculation of the management timing for croplands.All details are reported in the core of the deliverable. All data are up-loaded on the VERIFY THREDDS server (accessible through http://verify.lsce.ipsl.fr/index.php/products). Section 3 of the deliverable resume again the access to all datasets
    corecore