738 research outputs found
Human Erythrocytes Selectively Bind and Enrich Infectious HIV-1 Virions
Although CD4(+) cells represent the major target for HIV infection in blood, claims of complement-independent binding of HIV-1 to erythrocytes and the possible role of Duffy blood group antigen, have generated controversy. To examine the question of binding to erythrocytes, HIV-1 was incubated in vitro with erythrocytes from 30 healthy leukapheresis donors, and binding was determined by p24 analysis and adsorption of HIV-1 with reduction of infectivity for CD4(+) target cells. All of the cells, regardless of blood group type, bound HIV-1 p24. A typical preparation of erythrocytes bound <2.4% of the added p24, but erythrocytes selectively removed essentially all of the viral infectivity as determined by decreased infection of CD4(+) target cells; however, cell-associated HIV-1 was approximately 100-fold more efficient, via trans infection, than unadsorbed virus for infection of CD4(+) cells. All of the bound HIV-1 p24 was released by treatment of the cells with EDTA, and binding was optimized by adding Ca2+ and Mg2+ during the washing of erythrocytes containing bound HIV-1. Although the small number of contaminating leukocytes in the erythrocyte preparation also bound HIV-1 p24, there was no significant binding to CD4, and it thus appears that the binding occurred on leukocytes at non-CD4 sites. Furthermore, binding occurred to erythrocyte ghosts from which contaminating leukocytes had been previously removed. The results demonstrate that erythrocytes incubated in vitro with HIV-1 differentially adsorb all of the infectious HIV-1 virions (as opposed to non-infectious or degraded virions) in the absence of complement and independent of blood group, and binding is dependent on divalent cations. By analogy with HIV-1 bound to DC-SIGN on dendritic cells, erythrocyte-bound HIV-1 might comprise an important surface reservoir for trans infection of permissive cells
Recommended from our members
Impact of Th1 CD4 Follicular Helper T Cell Skewing on Antibody Responses to an HIV-1 Vaccine in Rhesus Macaques.
Generating durable humoral immunity through vaccination depends upon effective interactions of follicular helper T (Tfh) cells with germinal center (GC) B cells. Th1 polarization of Tfh cells is an important process shaping the success of Tfh-GC B cell interactions by influencing costimulatory and cytokine-dependent Tfh help to B cells. However, the question remains as to whether adjuvant-dependent modulation of Tfh cells enhances HIV-1 vaccine-induced antienvelope (anti-Env) antibody responses. We investigated whether an HIV-1 vaccine platform designed to increase the number of Th1-polarized Tfh cells enhances the magnitude and quality of anti-Env antibodies. Utilizing a novel interferon-induced protein 10 (IP-10)-adjuvanted HIV-1 DNA prime followed by a monophosphoryl lipid A and QS-21 (MPLA+QS-21)-adjuvanted Env protein boost (DIP-10 PALFQ) in macaques, we observed higher anti-Env serum IgG titers with greater cross-clade reactivity, specificity for V1V2, and effector functions than in macaques primed with DNA lacking IP-10 and boosted with MPLA-plus-alum-adjuvanted Env protein (DPALFA) The DIP-10 PALFQ vaccine regimen elicited higher anti-Env IgG1 and lower IgG4 antibody levels in serum, showing for the first time that adjuvants can dramatically impact the IgG subclass profile in macaques. The DIP-10 PALFQ regimen also increased vaginal and rectal IgA antibodies to a greater extent. Within lymph nodes, we observed augmented GC B cell responses and the promotion of Th1 gene expression profiles in GC Tfh cells. The frequency of GC Tfh cells correlated with both the magnitude and avidity of anti-Env serum IgG. Together, these data suggest that adjuvant-induced stimulation of Th1-Tfh cells is an effective strategy for enhancing the magnitude and quality of anti-Env antibody responses.IMPORTANCE The results of the RV144 trial demonstrated that vaccination could prevent HIV transmission in humans and that longevity of anti-Env antibodies may be key to this protection. Efforts to improve upon the prime-boost vaccine regimen used in RV144 have indicated that booster immunizations can increase serum anti-Env antibody titers but only transiently. Poor antibody durability hampers efforts to develop an effective HIV-1 vaccine. This study was designed to identify the specific elements involved in the immunological mechanism necessary to produce robust HIV-1-specific antibodies in rhesus macaques. By clearly defining immune-mediated pathways that improve the magnitude and functionality of the anti-HIV-1 antibody response, we will have the foundation necessary for the rational development of an HIV-1 vaccine
Actin/microtubule crosstalk during platelet biogenesis in mice is critically regulated by Twinfilin1 and Cofilin1
Rearrangements of the microtubule (MT) and actin cytoskeleton are pivotal for platelet biogenesis. Hence, defects in actin- or MT-regulatory proteins are associated with platelet disorders in humans and mice. Previous studies in mice revealed that loss of the actin-depolymerizing factor homology (ADF-H) protein Cofilin1 (Cof1) in megakaryocytes (MKs) results in a moderate macrothrombocytopenia but normal MK numbers, whereas deficiency in another ADF-H protein, Twinfilin1 (Twf1), does not affect platelet production or function. However, recent studies in yeast have indicated a critical synergism between Twf1 and Cof1 in the regulation of actin dynamics. We therefore investigated platelet biogenesis and function in mice lacking both Twf1 and Cof1 in the MK lineage. In contrast to single deficiency in either protein, Twf1/Cof1 double deficiency (DKO) resulted in a severe macrothrombocytopenia and dramatically increased MK numbers in bone marrow and spleen. DKO MKs exhibited defective proplatelet formation in vitro and in vivo as well as impaired spreading and altered assembly of podosome-like structures on collagen and fibrinogen in vitro. These defects were associated with aberrant F-actin accumulation and, remarkably, the formation of hyperstable MT, which appears to be caused by dysregulation of the actin- and MT-binding proteins mDia1 and adenomatous polyposis coli. Surprisingly, the mild functional defects described for Cof1-deficient platelets were only slightly aggravated in DKO platelets suggesting that both proteins are largely dispensable for platelet function in the peripheral blood. In summary, these findings reveal critical redundant functions of Cof1 and Twf1 in ensuring balanced actin/microtubule crosstalk during thrombopoiesis in mice and possibly humans.Peer reviewe
Thymosin β4 is essential for thrombus formation by controlling the G-actin/F-actin equilibrium in platelets
Coordinated rearrangements of the actin cytoskeleton are pivotal for platelet biogenesis from megakaryocytes but also orchestrate key functions of peripheral platelets in hemostasis and thrombosis, such as granule release, the formation of filopodia and lamellipodia, or clot retraction. Along with profilin (Pfn) 1, thymosin β4 (encoded by Tmsb4x) is one of the two main G-actin-sequestering proteins within cells of higher eukaryotes, and its intracellular concentration is particularly high in cells that rapidly respond to external signals by increased motility, such as platelets. Here, we analyzed constitutive Tmsb4x knockout (KO) mice to investigate the functional role of the protein in platelet production and function. Thymosin β4 deficiency resulted in a macrothrombocytopenia with only mildly increased platelet volume and an unaltered platelet life span. Megakaryocyte numbers in the bone marrow and spleen were unaltered, however, Tmsb4x KO megakaryocytes showed defective proplatelet formation in vitro and in vivo. Thymosin β4-deficient platelets displayed markedly decreased G-actin levels and concomitantly increased F-actin levels resulting in accelerated spreading on fibrinogen and clot retraction. Moreover, Tmsb4x KO platelets showed activation defects and an impaired immunoreceptor tyrosine-based activation motif (ITAM) signaling downstream of the activating collagen receptor glycoprotein VI. These defects translated into impaired aggregate formation under flow, protection from occlusive arterial thrombus formation in vivo and increased tail bleeding times. In summary, these findings point to a critical role of thymosin β4 for actin dynamics during platelet biogenesis, platelet activation downstream of glycoprotein VI and thrombus stability
Editor's Choice - Optimal Threshold for the Volume-Outcome Relationship After Open AAA Repair in the Endovascular Era : Analysis of the International Consortium of Vascular Registries
Objective: As open abdominal aortic aneurysm (AAA) repair (OAR) rates decline in the endovascular era, the endorsement of minimum volume thresholds for OAR is increasingly controversial, as this may affect credentialing and training. The purpose of this analysis was to identify an optimal centre volume threshold that is associated with the most significant mortality reduction after OAR, and to determine how this reflects contemporary practice. Methods: This was an observational study of OARs performed in 11 countries (2010 - 2016) within the International Consortium of Vascular Registry database (n = 178 302). The primary endpoint was post-operative in hospital mortality. Two different methodologies (area under the receiving operating curve optimisation and Markov chain Monte Carlo procedure) were used to determine the optimal centre volume threshold associated with the most significant mortality improvement. Results: In total, 154 912 (86.9%) intact and 23 390 (13.1%) ruptured AAAs were analysed. The majority (63.1%; n = 112 557) underwent endovascular repair (EVAR) (OAR 36.9%; n = 65 745). A significant inverse relationship between increasing centre volume and lower peri-operative mortality after intact and ruptured OAR was evident (p = 13 procedures/year volume threshold, with significant variation between nations (Germany 11%; Denmark 100%). Conclusion: An annual centre volume of 13 - 16 OARs per year is the optimal threshold associated with the greatest mortality risk reduction after treatment of intact AAA. However, in the current endovascular era, achieving this threshold requires significant re-organisation of OAR practice delivery in many countries, and would affect provision of non-elective aortic services. Low volume centres continuing to offer OAR should aim to achieve mortality results equivalent to the high volume institution benchmark, using validated data from quality registries to track outcomes.Peer reviewe
Predictive biomarker discovery through the parallel integration of clinical trial and functional genomics datasets
The European Union multi-disciplinary Personalised RNA interference to Enhance the Delivery of Individualised Cytotoxic and Targeted therapeutics (PREDICT) consortium has recently initiated a framework to accelerate the development of predictive biomarkers of individual patient response to anti-cancer agents. The consortium focuses on the identification of reliable predictive biomarkers to approved agents with anti-angiogenic activity for which no reliable predictive biomarkers exist: sunitinib, a multi-targeted tyrosine kinase inhibitor and everolimus, a mammalian target of rapamycin (mTOR) pathway inhibitor. Through the analysis of tumor tissue derived from pre-operative renal cell carcinoma (RCC) clinical trials, the PREDICT consortium will use established and novel methods to integrate comprehensive tumor-derived genomic data with personalized tumor-derived small hairpin RNA and high-throughput small interfering RNA screens to identify and validate functionally important genomic or transcriptomic predictive biomarkers of individual drug response in patients. PREDICT's approach to predictive biomarker discovery differs from conventional associative learning approaches, which can be susceptible to the detection of chance associations that lead to overestimation of true clinical accuracy. These methods will identify molecular pathways important for survival and growth of RCC cells and particular targets suitable for therapeutic development. Importantly, our results may enable individualized treatment of RCC, reducing ineffective therapy in drug-resistant disease, leading to improved quality of life and higher cost efficiency, which in turn should broaden patient access to beneficial therapeutics, thereby enhancing clinical outcome and cancer survival. The consortium will also establish and consolidate a European network providing the technological and clinical platform for large-scale functional genomic biomarker discovery. Here we review our current understanding of molecular mechanisms driving resistance to anti-angiogenesis agents, the current limitations of laboratory and clinical trial strategies and how the PREDICT consortium will endeavor to identify a new generation of predictive biomarkers
Variations in Abdominal Aortic Aneurysm Care A Report From the International Consortium of Vascular Registries
BACKGROUND: This project by the ICVR (International Consortium of Vascular Registries), a collaboration of 11 vascular surgical quality registries, was designed to evaluate international variation in the contemporary management of abdominal aortic aneurysm (AAA) with relation to recommended treatment guidelines from the Society for Vascular Surgery and the European Society for Vascular Surgery. METHODS: Registry data for open and endovascular AAA repair (EVAR) during 2010 to 2013 were collected from 11 countries. Variations in patient selection and treatment were compared across countries and across centers within countries. RESULTS: Among 51 153 patients, 86% were treated for intact AAA (iAAA) and 14% for ruptured AAA. Women constituted 18% of the entire cohort (range, 12% in Switzerland-21% in the United States; P CONCLUSIONS: Despite homogeneous guidelines from professional societies, significant variation exists in the management of AAA, most notably for iAAA diameter at repair, use of EVAR, and the treatment of elderly patients. ICVR provides an opportunity to study treatment variation across countries and to encourage optimal practice by sharing these results.Peer reviewe
Detection of cannabinoid receptor type 2 in native cells and zebrafish with a highly potent, cell-permeable fluorescent probe.
Despite its essential role in the (patho)physiology of several diseases, CB2R tissue expression profiles and signaling mechanisms are not yet fully understood. We report the development of a highly potent, fluorescent CB2R agonist probe employing structure-based reverse design. It commences with a highly potent, preclinically validated ligand, which is conjugated to a silicon-rhodamine fluorophore, enabling cell permeability. The probe is the first to preserve interspecies affinity and selectivity for both mouse and human CB2R. Extensive cross-validation (FACS, TR-FRET and confocal microscopy) set the stage for CB2R detection in endogenously expressing living cells along with zebrafish larvae. Together, these findings will benefit clinical translatability of CB2R based drugs
- …