1,282 research outputs found

    Load management strategy for Particle-In-Cell simulations in high energy particle acceleration

    Full text link
    In the wake of the intense effort made for the experimental CILEX project, numerical simulation cam- paigns have been carried out in order to finalize the design of the facility and to identify optimal laser and plasma parameters. These simulations bring, of course, important insight into the fundamental physics at play. As a by-product, they also characterize the quality of our theoretical and numerical models. In this paper, we compare the results given by different codes and point out algorithmic lim- itations both in terms of physical accuracy and computational performances. These limitations are illu- strated in the context of electron laser wakefield acceleration (LWFA). The main limitation we identify in state-of-the-art Particle-In-Cell (PIC) codes is computational load imbalance. We propose an innovative algorithm to deal with this specific issue as well as milestones towards a modern, accurate high-per- formance PIC code for high energy particle acceleration

    Principled Design and Implementation of Steerable Detectors

    Full text link
    We provide a complete pipeline for the detection of patterns of interest in an image. In our approach, the patterns are assumed to be adequately modeled by a known template, and are located at unknown position and orientation. We propose a continuous-domain additive image model, where the analyzed image is the sum of the template and an isotropic background signal with self-similar isotropic power-spectrum. The method is able to learn an optimal steerable filter fulfilling the SNR criterion based on one single template and background pair, that therefore strongly responds to the template, while optimally decoupling from the background model. The proposed filter then allows for a fast detection process, with the unknown orientation estimation through the use of steerability properties. In practice, the implementation requires to discretize the continuous-domain formulation on polar grids, which is performed using radial B-splines. We demonstrate the practical usefulness of our method on a variety of template approximation and pattern detection experiments

    The Bay of Kiladha Project (Argolid, Greece): Bridging East and West

    Get PDF
    The project, a joint research program between the University of Geneva, under the aegis of the Swiss School of Archaeology in Greece, and the Greek Ephorate of Underwater Antiquities, aims at finding traces of prehistoric human activity in a small bay of the southern Argolid, near the Franchthi Cave, a major prehistoric site used from 40,000 years ago to 5,000 years ago. For most of these 35,000 years, because of global sea-level change in prehistory, the Bay of Kiladha was in fact a small coastal plain, where the sedentary farmers of the Neolithic period had probably their village.Research currently focuses on two parts of the bay: the Franchthi sector, close to the Cave (submerged Neolithic village) and the Lambayanna sector, just a few hundred meters to the north of Franchthi Cave (HA II fortified settlement)

    RNA Control of HIV-1 Particle Size Polydispersity

    Get PDF
    HIV-1, an enveloped RNA virus, produces viral particles that are known to be much more heterogeneous in size than is typical of non-enveloped viruses. We present here a novel strategy to study HIV-1 Viral Like Particles (VLP) assembly by measuring the size distribution of these purified VLPs and subsequent viral cores thanks to Atomic Force Microscopy imaging and statistical analysis. This strategy allowed us to identify whether the presence of viral RNA acts as a modulator for VLPs and cores size heterogeneity in a large population of particles. These results are analyzed in the light of a recently proposed statistical physics model for the self-assembly process. In particular, our results reveal that the modulation of size distribution by the presence of viral RNA is qualitatively reproduced, suggesting therefore an entropic origin for the modulation of RNA uptake by the nascent VLP

    Surface rearrangement at complex adsorbate-substrate interfaces

    Full text link
    On the basis of the information theory approach we propose a novel statistical scheme for analyzing the evolution of coupled adsorbate-substrate systems, in which the substrate undergoes the adsorbate-induced transformations. A relation between the substrate morphology and the adsorbate thermodynamic state is established. This allows one to estimate the surface structure in terms of incomplete experimental information and the one concerning the adsorbate thermodynamic response to the structural modifications.Comment: 5 pages, 3 figure

    Universal relaxation function in nonextensive systems

    Full text link
    We have derived the dipolar relaxation function for a cluster model whose volume distribution was obtained from the generalized maximum Tsallis nonextensive entropy principle. The power law exponents of the relaxation function are simply related to a global fractal parameter α\alpha and for large time to the entropy nonextensivity parameter qq. For intermediate times the relaxation follows a stretched exponential behavior. The asymptotic power law behaviors both in the time and the frequency domains coincide with those of the Weron generalized dielectric function derived from an extension of the Levy central limit theorem. They are in full agreement with the Jonscher universality principle. Moreover our model gives a physical interpretation of the mathematical parameters of the Weron stochastic theory and opens new paths to understand the ubiquity of self-similarity and power laws in the relaxation of large classes of materials in terms of their fractal and nonextensive properties.Comment: Two figures. Submitted for publicatio

    Roles of Major Facilitator Superfamily Transporters in Phosphate Response in Drosophila

    Get PDF
    The major facilitator superfamily (MFS) transporter Pho84 and the type III transporter Pho89 are responsible for metabolic effects of inorganic phosphate in yeast. While the Pho89 ortholog Pit1 was also shown to be involved in phosphate-activated MAPK in mammalian cells, it is currently unknown, whether orthologs of Pho84 have a role in phosphate-sensing in metazoan species. We show here that the activation of MAPK by phosphate observed in mammals is conserved in Drosophila cells, and used this assay to characterize the roles of putative phosphate transporters. Surprisingly, while we found that RNAi-mediated knockdown of the fly Pho89 ortholog dPit had little effect on the activation of MAPK in Drosophila S2R+ cells by phosphate, two Pho84/SLC17A1–9 MFS orthologs (MFS10 and MFS13) specifically inhibited this response. Further, using a Xenopus oocyte assay, we show that MSF13 mediates uptake of [³³P]-orthophosphate in a sodium-dependent fashion. Consistent with a role in phosphate physiology, MSF13 is expressed highest in the Drosophila crop, midgut, Malpighian tubule, and hindgut. Altogether, our findings provide the first evidence that Pho84 orthologs mediate cellular effects of phosphate in metazoan cells. Finally, while phosphate is essential for Drosophila larval development, loss of MFS13 activity is compatible with viability indicating redundancy at the levels of the transporters.National Institutes of Health (U.S.) (NIDDK 5K08DK078361)Harvard Catalys

    Extragalactic Magnetism with SOFIA (SALSA Legacy Program). VII. A tomographic view of far infrared and radio polarimetric observations through MHD simulations of galaxies

    Full text link
    The structure of magnetic fields in galaxies remains poorly constrained, despite the importance of magnetism in the evolution of galaxies. Radio synchrotron and far-infrared dust polarization (FIR) polarimetric observations are the best methods to measure galactic scale properties of magnetic fields in galaxies beyond the Milky Way. We use synthetic polarimetric observations of a simulated galaxy to identify and quantify the regions, scales, and interstellar medium (ISM) phases probed at FIR and radio wavelengths. Our studied suite of magnetohydrodynamical cosmological zoom-in simulations features high-resolutions (10 pc full-cell size) and multiple magnetization models. Our synthetic observations have a striking resemblance to those of observed galaxies. We find that the total and polarized radio emission extends to approximately double the altitude above the galactic disk (half-intensity disk thickness of hI radiohPI radio=0.23±0.03h_\text{I radio} \sim h_\text{PI radio} = 0.23 \pm 0.03 kpc) relative to the FIR total and polarized emission that are concentrated in the disk midplane (hI FIRhPI FIR=0.11±0.01h_\text{I FIR} \sim h_\text{PI FIR} = 0.11 \pm 0.01 kpc). Radio emission traces magnetic fields at scales of 300\gtrsim 300 pc, whereas FIR emission probes magnetic fields at the smallest scales of our simulations. These scales are comparable to our spatial resolution and well below the spatial resolution (<300<300 pc) of existing FIR polarimetric measurements. Finally, we confirm that synchrotron emission traces a combination of the warm neutral and cold neutral gas phases, whereas FIR emission follows the densest gas in the cold neutral phase in the simulation. These results are independent of the ISM magnetic field strength. The complementarity we measure between radio and FIR wavelengths motivates future multiwavelength polarimetric observations to advance our knowledge of extragalactic magnetism.Comment: Submitted to ApJ. 32 pages, 15 figure
    corecore