32 research outputs found

    Enhanced symbolic regression to infer biochemical network models

    Get PDF
    Biological systems can be represented as complex networks illustrating the relationships and connections among biochemical species. Complex networks can uncover vital information regarding specific pathways or network bottlenecks, helping to reveal novel discoveries relevant to a variety of applications. Biological networks, however, are often highly interconnected and non-linear in nature making development of a comprehensive model challenging. Large amounts of data can be acquired to elucidate specific pathways, but deducing the entire network topology requires more rigorous computational techniques. There are in silico techniques, including evolutionary algorithms, to predict network topologies using information from experimental data. Biological networks can be decomposed into a system of differential equations under mass action kinetics assumptions describing the rate of change of the various biochemical species in the network. Symbolic regression can be used to generate a system of equations from acquired data. Please click Additional Files below to see the full abstract

    Highly Conductive In-SnO2/RGO Nano-Heterostructures with Improved Lithium-Ion Battery Performance

    Get PDF
    The increasing demand of emerging technologies for high energy density electrochemical storage has led many researchers to look for alternative anode materials to graphite. The most promising conversion and alloying materials do not yet possess acceptable cycle life or rate capability. In this work, we use tin oxide, SnO2, as a representative anode material to explore the influence of graphene incorporation and In-doping to increase the electronic conductivity and concomitantly improve capacity retention and cycle life. It was found that the incorporation of In into SnO2 reduces the charge transfer resistance during cycling, prolonging life. It is also hypothesized that the increased conductivity allows the tin oxide conversion and alloying reactions to both be reversible, leading to very high capacity near 1200 mAh/g. Finally, the electrodes show excellent rate capability with a capacity of over 200 mAh/g at 10C

    Listeriolysin O Is Necessary and Sufficient to Induce Autophagy during Listeria monocytogenes Infection

    Get PDF
    Recent studies have suggested that autophagy is utilized by cells as a protective mechanism against Listeria monocytogenes infection.However we find autophagy has no measurable role in vacuolar escape and intracellular growth in primary cultured bone marrow derived macrophages (BMDMs) deficient for autophagy (atg5-/-). Nevertheless, we provide evidence that the pore forming activity of the cholesterol-dependent cytolysin listeriolysin O (LLO) can induce autophagy subsequent to infection by L. monocytogenes. Infection of BMDMs with L. monocytogenes induced microtubule-associated protein light chain 3 (LC3) lipidation, consistent with autophagy activation, whereas a mutant lacking LLO did not. Infection of BMDMs that express LC3-GFP demonstrated that wild-type L. monocytogenes was encapsulated by LC3-GFP, consistent with autophagy activation, whereas a mutant lacking LLO was not. Bacillus subtilis expressing either LLO or a related cytolysin, perfringolysin O (PFO), induced LC3 colocalization and LC3 lipidation. Further, LLO-containing liposomes also recruited LC3-GFP, indicating that LLO was sufficient to induce targeted autophagy in the absence of infection. The role of autophagy had variable effects depending on the cell type assayed. In atg5-/- mouse embryonic fibroblasts, L. monocytogenes had a primary vacuole escape defect. However, the bacteria escaped and grew normally in atg5-/- BMDMs.We propose that membrane damage, such as that caused by LLO, triggers bacterial-targeted autophagy, although autophagy does not affect the fate of wild-type intracellular L. monocytogenes in primary BMDMs

    A História da Alimentação: balizas historiográficas

    Full text link
    Os M. pretenderam traçar um quadro da História da Alimentação, não como um novo ramo epistemológico da disciplina, mas como um campo em desenvolvimento de práticas e atividades especializadas, incluindo pesquisa, formação, publicações, associações, encontros acadêmicos, etc. Um breve relato das condições em que tal campo se assentou faz-se preceder de um panorama dos estudos de alimentação e temas correia tos, em geral, segundo cinco abardagens Ia biológica, a econômica, a social, a cultural e a filosófica!, assim como da identificação das contribuições mais relevantes da Antropologia, Arqueologia, Sociologia e Geografia. A fim de comentar a multiforme e volumosa bibliografia histórica, foi ela organizada segundo critérios morfológicos. A seguir, alguns tópicos importantes mereceram tratamento à parte: a fome, o alimento e o domínio religioso, as descobertas européias e a difusão mundial de alimentos, gosto e gastronomia. O artigo se encerra com um rápido balanço crítico da historiografia brasileira sobre o tema

    Enhancing iCVD Modification of Electrospun Membranes for Membrane Distillation through a 3D Printed Scaffold

    Get PDF
    In this work, initiated chemical vapor deposition, iCVD, is used as a modification technique for electrospun membranes. Electrospun membranes are often hydrophilic and cannot be used in membrane distillation which requires high hydrophobicity. In membrane distillation, a thermal driving force is supplied to create a vapor pressure difference across a membrane allowing vapor molecules to pass through while rejecting liquid and solids. iCVD can be used to conformally coat the individual nanofibers with a hydrophobic polymer to render the membrane viable for the MD process. The standard coating procedure uses natural convective diffusion as the method of transport of the hydrophobic coating monomer to the membrane. This procedure requires two sides of coating to achieve adequate hydrophobicity. We have altered this process by implementing a 3D printed scaffold to change the coating orientation of the membrane to force convective flow through the membrane effectively coating the membrane faster than traditional natural convective diffusion. It was found that this process reduced the coating time to 20 minutes compared to 200 minutes previously required for this membrane. It also eliminated the need to coat both sides of the membrane further reducing the process dead time. The membranes, themselves, also exhibited 100% salt rejection and a competitive flux value

    Les meurtriers sexuels : Analyse comparative et nouvelles perspectives

    No full text
    Qu'est-ce qui pousse un individu à commettre un meurtre sexuel ? Quelles étaient les intentions du meurtrier au moment des faits ? Pourquoi une agression sexuelle dévie-t-elle vers l'homicide ? Cette étude, qui repose sur une analyse comparative des violeurs et des meurtriers sexuels, démontre que le meurtre sexuel dépend de la combinaison de facteurs développementaux, intentionnels et situationnels. La colère, la consommation d'alcool, la motivation sexuelle dans l'agression, le sadisme sont autant d'indices qui permettent de comprendre le meurtre sexuel. Cet ouvrage remet en question nombre d'idées reçues sur les meurtriers sexuels. Contrairement à ce que l'on aurait tendance à croire, les sadiques ne représentent qu'une minorité de meurtriers sexuels et les violeurs ont souvent la même histoire criminelle et les mêmes troubles de la personnalité que les meurtriers sexuels. En fait, le parcours criminel des meurtriers sexuels ressemble étrangement à celui des délinquants récidivistes et il apparaît difficile de tracer un profil précis qui les identifierait hors de tout doute possible. Théorique mais aussi pratique, cet ouvrage propose des stratégies d'enquêtes et d'interrogatoires en matière de meurtre sexuel

    Enhancing iCVD Modification of Electrospun Membranes for Membrane Distillation Using a 3D Printed Scaffold

    No full text
    Electrospun membranes have shown promise for use in membrane distillation (MD) as they exhibit exceptionally low vapor transport. Their high porosity coupled with the occasional large pore can make them prone to wetting. In this work, initiated chemical vapor deposition (iCVD) is used to modify for electrospun membranes with increased hydrophobicity of the fiber network. To demonstrate conformal coating, we demonstrate the approach on intrinsically hydrophilic electrospun fibers and render the fibers suitable for MD. We enable conformal coating using a unique coating procedure, which provides convective flow of deposited polymers during iCVD. This is made possible by using a 3D printed scaffold, which changed the orientation of the membrane during the coating process. The new coating orientation allows both sides as well as the interior of the membrane to be coated simultaneously and reduced the coating time by a factor of 10 compared to conventional CVD approaches. MD testing confirmed the hydrophobicity of the material as 100% salt rejections were obtained
    corecore