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Biological systems can be represented as complex 
networks illustrating the relationships and 
connections among biochemical species. Complex 
networks can uncover vital information regarding 
specific pathways or network bottlenecks, helping to 
reveal novel discoveries relevant to a variety of 
applications. Biological networks, however, are often 
highly interconnected and non-linear in nature 
making development of a comprehensive model 
challenging. Large amounts of data can be acquired 
to elucidate specific pathways, but deducing the 
entire network topology requires more rigorous 
computational techniques. There are in silico 
techniques, including evolutionary algorithms, to 
predict network topologies using information from 
experimental data. Biological networks can be 
decomposed into a system of differential equations 
under mass action kinetics assumptions describing 
the rate of change of the various biochemical species in the network. Symbolic regression can be used to 
generate a system of equations from acquired data. 
 
In this work, we employed genetic programming, a stochastic optimization method, to generate an ensemble of 
symbolically regressed equations describing intracellular viral kinetics. Due to the highly inter-connected and 
nonlinear nature of these systems, it can often be computationally infeasible to find a solution for an 
unconstrained system. To address these hurdles, the complexity of the differential equations and the search 
space for the kinetic parameters were constrained. First, we assumed that the kinetic equations regressed could 
only be zero, first, or second order. Higher order equations are rarely observed in nature and therefore excluded 
to narrow the pool of potential reaction combinations. To limit the search space for rate constants, data acquired 
from the system were used to make an assisted stochastic guess. From the data, in addition to the actual value 
for each species at each time point, it was possible to determine an approximate derivative value at each time 
point. It was then possible to backcalculate a range of potential rate constants and randomly choose one from 
that range. An initial guess selected from the ranges generated were used to estimate the parameters using 
simulated annealing for the entire differential equation system. 
 
Instead of only considering the best solution from each simulation, information about the system from an 
ensemble of models was gathered. Once the genetic program completed, stability analysis was employed to 
extract only stable and practical solutions from the set of best models. As shown in Figure 1, results of the best 
models generated via genetic programming bounded the results of the original model. By evaluating the 
ensemble of equations, it was possible to look for terms that appeared in the majority of these equations. The 
more frequently terms appeared, the more confident we were that the relationship was part of the real network. 
Our simulations were run for 100 generations and were completed on a standard desktop computer in less than 
a day using simulated annealing for parameter estimation. Other parameter estimation algorithms tested took 
significantly longer, including the Nelder-Mead algorithm which took approximately seven times as long on the 
same computer. In the future, we plan to extend this algorithm to more complicated systems including multi-omic 
networks where extensive data can be collected to discover or corroborate different multi-omic mechanisms. 
 

Figure 1: The best solutions generated by the genetic 
program for viral DNA replication dynamics show good 

agreement with the data generated by the original model. 


