128 research outputs found

    Building an Optimal Census of the Solar Neighborhood with Pan-STARRS Data

    Full text link
    We estimate the fidelity of solar neighborhood (D < 100 pc) catalogs soon to be derived from Pan-STARRS astrometric data. We explore two quantities used to measure catalog quality: completeness, the fraction of desired sources included in a catalog; and reliability, the fraction of entries corresponding to desired sources. We show that the main challenge in identifying nearby objects with Pan-STARRS will be reliably distinguishing these objects from distant stars, which are vastly more numerous. We explore how joint cuts on proper motion and parallax will impact catalog reliability and completeness. Using synthesized astrometry catalogs, we derive optimum parallax and proper motion cuts to build a census of the solar neighborhood with the Pan-STARRS 3 Pi Survey. Depending on the Galactic latitude, a parallax cut pi / sigma pi > 5 combined with a proper motion cut ranging from mu / sigma mu > 1-8 achieves 99% reliability and 60% completeness.Comment: 7 Pages, 4 Figures, 3 Tables. PASP in pres

    Discerning the Form of the Dense Core Mass Function

    Full text link
    We investigate the ability to discern between lognormal and powerlaw forms for the observed mass function of dense cores in star forming regions. After testing our fitting, goodness-of-fit, and model selection procedures on simulated data, we apply our analysis to 14 datasets from the literature. Whether the core mass function has a powerlaw tail or whether it follows a pure lognormal form cannot be distinguished from current data. From our simulations it is estimated that datasets from uniform surveys containing more than approximately 500 cores with a completeness limit below the peak of the mass distribution are needed to definitively discern between these two functional forms. We also conclude that the width of the core mass function may be more reliably estimated than the powerlaw index of the high mass tail and that the width may also be a more useful parameter in comparing with the stellar initial mass function to deduce the statistical evolution of dense cores into stars.Comment: 6 pages, 2 figures, accepted for publication in PAS

    Quantifying Observational Projection Effects Using Molecular Cloud Simulations

    Get PDF
    The physical properties of molecular clouds are often measured using spectral-line observations, which provide the only probes of the clouds' velocity structure. It is hard, though, to assess whether and to what extent intensity features in position-position-velocity (PPV) space correspond to "real" density structures in position-position-position (PPP) space. In this paper, we create synthetic molecular cloud spectral-line maps of simulated molecular clouds, and present a new technique for measuring the reality of individual PPV structures. Using a dendrogram algorithm, we identify hierarchical structures in both PPP and PPV space. Our procedure projects density structures identified in PPP space into corresponding intensity structures in PPV space and then measures the geometric overlap of the projected structures with structures identified from the synthetic observation. The fractional overlap between a PPP and PPV structure quantifies how well the synthetic observation recovers information about the three-dimensional structure. Applying this machinery to a set of synthetic observations of CO isotopes, we measure how well spectral-line measurements recover mass, size, velocity dispersion, and virial parameter for a simulated star-forming region. By disabling various steps of our analysis, we investigate how much opacity, chemistry, and gravity affect measurements of physical properties extracted from PPV cubes. For the simulations used here, which offer a decent, but not perfect, match to the properties of a star-forming region like Perseus, our results suggest that superposition induces a ~40% uncertainty in masses, sizes, and velocity dispersions derived from13^{13}CO (J = 1-0). As would be expected, superposition and confusion is worst in regions where the filling factor of emitting material is large. The virial parameter is most affected by superposition, such that estimates of the virial parameter derived from PPV and PPP information typically disagree by a factor of ~2. This uncertainty makes it particularly difficult to judge whether gravitational or kinetic energy dominate a given region, since the majority of virial parameter measurements fall within a factor of two of the equipartition level α ~ 2.Astronom

    The linewidth-size relationship in the dense ISM of the Central Molecular Zone

    Full text link
    The linewidth (sigma) - size (R) relationship has been extensively measured and analysed, in both the local ISM and in nearby normal galaxies. Generally, a power-law describes the relationship well with an index ranging from 0.2-0.6, now referred to as one of "Larson's Relationships." The nature of turbulence and star formation is considered to be intimately related to these relationships, so evaluating the sigma-R correlations in various environments is important for developing a comprehensive understanding of the ISM. We measure the sigma-R relationship in the Central Molecular Zone (CMZ) of the Galactic Centre using spectral line observations of the high density tracers N2H+, HCN, H13CN, and HCO+. We use dendrograms, which map the hierarchical nature of the position-position-velocity (PPV) data, to compute sigma and R of contiguous structures. The dispersions range from ~2-30 km/s in structures spanning sizes 2-40 pc, respectively. By performing Bayesian inference, we show that a power-law with exponent 0.3-1.1 can reasonably describe the sigma-R trend. We demonstrate that the derived sigma-R relationship is independent of the locations in the PPV dataset where sigma and R are measured. The uniformity in the sigma-R relationship suggests turbulence in the CMZ is driven on the large scales beyond >30 pc. We compare the CMZ sigma-R relationship to that measured in the Galactic molecular cloud Perseus. The exponents between the two systems are similar, suggestive of a connection between the turbulent properties within a cloud to its ambient medium. Yet, the velocity dispersion in the CMZ is systematically higher, resulting in a coefficient that is nearly five times larger. The systematic enhancement of turbulent velocities may be due to the combined effects of increased star formation activity, larger densities, and higher pressures relative to the local ISM.Comment: 11 pages, 8 figures, Accepted for publication in MNRA

    The Bones of the Milky Way

    Get PDF
    The very long, thin infrared dark cloud "Nessie" is even longer than had been previously claimed, and an analysis of its Galactic location suggests that it lies directly in the Milky Way’s mid-plane, tracing out a highly elongated bone-like feature within the prominent Scutum-Centaurus spiral arm. Re-analysis of mid-infrared imagery from the Spitzer Space Telescope shows that this IRDC is at least 2, and possibly as many as 8 times longer than had originally been claimed by Nessie’s discoverers, Jackson et al. (2010); its aspect ratio is therefore at least 150:1, and possibly as large as 800:1. A careful accounting for both the Sun’s offset from the Galactic plane (∌25 pc) and the Galactic center’s offset from the (lII,bIIl^{II},b^{II})=(0,0) position defined by the IAU in 1959 shows that the latitude of the true Galactic mid-plane at the 3.1 kpc distance to the Scutum-Centaurus Arm is not b=0, but instead closer to b=−0.5, which is the latitude of Nessie to within a few pc. Apparently, Nessie lies in the Galactic mid-plane. An analysis of the radial velocities of low-density (CO) and high-density (NH3NH_3) gas associated with the Nessie dust feature suggests that Nessie runs along the Scutum-Centaurus Arm in position-position-velocity space, which means it likely forms a dense ‘spine’ of the arm in real space as well. No galaxy-scale simulation to date has the spatial resolution to predict a Nessie-like feature, but extant simulations do suggest that highly elongated over-dense filaments should be associated with a galaxy’s spiral arms. Nessie is situated in the closest major spiral arm to the Sun toward the inner Galaxy, and appears almost perpendicular to our line of sight, making it the easiest feature of its kind to detect from our location (a shadow of an Arm’s bone, illuminated by the Galaxy beyond). Although the Sun’s (∌25 pc) offset from the Galactic plane is not large in comparison with the half-thickness of the plane as traced by Population I objects such as GMCs and HII regions (∌200 pc; Rix et al. (2013)), it may be significant compared with an extremely thin layer that might be traced out by Nessie-like ”bones“ of the Milky Way. Future high-resolution extinction and molecular line data may therefore allow us to exploit the Sun’s position above the plane to gain a (very foreshortened) view "from above” of dense gas in Milky Way’s disk and its structure.Astronom

    A Bubbling Nearby Molecular Cloud: COMPLETE Shells in Perseus

    Full text link
    We present a study on the shells (and bubbles) in the Perseus molecular cloud using the COMPLETE survey large-scale 12CO(1-0) and 13CO(1-0) maps. The twelve shells reported here are spread throughout most of the Perseus cloud and have circular or arc-like morphologies with a range in radius of about 0.1 to 3 pc. Most of them have not been detected before most likely as maps of the region lacked the coverage and resolution needed to distinguish them. The majority of the shells are coincident with infrared nebulosity of similar shape and have a candidate powering source near the center. We suggest they are formed by the interaction of spherical or very wide-angle winds powered by young stars inside or near the Perseus molecular cloud -a cloud that is commonly considered to be mostly forming low-mass stars. Two of the twelve shells are powered by high-mass stars close to the cloud, while the others appear to be powered by low or intermediate mass stars in the cloud. We argue that winds with a mass loss rate of about 10^-8 to 10^-6 M_sun/yr are required to produce the observed shells. Our estimates indicate that the energy input rate from these stellar winds is similar to the turbulence dissipation rate. We conclude that in Perseus the total energy input from both collimated protostellar outflows and powerful spherical winds from young stars is sufficient to maintain the turbulence in the molecular cloud. Large scale molecular line and IR continuum maps of a sample of clouds will help determine the frequency of this phenomenon in other star forming regions.Comment: 48 pages in total: 16 pages of text and references; 2 pages of tables; 30 figures (one page per figure). Accepted for publication in the Astrophysical Journa

    A Simple Perspective on the Mass-Area Relationship in Molecular Clouds

    Full text link
    Despite over 30 years of study, the mass-area relationship within and among clouds is still poorly understood both observationally and theoretically. Modern extinction datasets should have sufficient resolution and dynamic range to characterize this relationship for nearby molecular clouds, although recent papers using extinction data seem to yield different interpretations regarding the nature and universality of this aspect of cloud structure. In this paper we try to unify these various results and interpretations by accounting for the different ways cloud properties are measured and analyzed. We interpret the mass-area relationship in terms of the column density distribution function and its possible variation within and among clouds. We quantitatively characterize regional variations in the column density PDF. We show that structures both within and among clouds possess the same degree of "universality", in that their PDF means do not systematically scale with structure size. Because of this, mass scales linearly with area.Comment: 10 pages, 8 figures, MNRAS in pres
    • 

    corecore