We present a study on the shells (and bubbles) in the Perseus molecular cloud
using the COMPLETE survey large-scale 12CO(1-0) and 13CO(1-0) maps. The twelve
shells reported here are spread throughout most of the Perseus cloud and have
circular or arc-like morphologies with a range in radius of about 0.1 to 3 pc.
Most of them have not been detected before most likely as maps of the region
lacked the coverage and resolution needed to distinguish them. The majority of
the shells are coincident with infrared nebulosity of similar shape and have a
candidate powering source near the center. We suggest they are formed by the
interaction of spherical or very wide-angle winds powered by young stars inside
or near the Perseus molecular cloud -a cloud that is commonly considered to be
mostly forming low-mass stars. Two of the twelve shells are powered by
high-mass stars close to the cloud, while the others appear to be powered by
low or intermediate mass stars in the cloud. We argue that winds with a mass
loss rate of about 10^-8 to 10^-6 M_sun/yr are required to produce the observed
shells. Our estimates indicate that the energy input rate from these stellar
winds is similar to the turbulence dissipation rate. We conclude that in
Perseus the total energy input from both collimated protostellar outflows and
powerful spherical winds from young stars is sufficient to maintain the
turbulence in the molecular cloud. Large scale molecular line and IR continuum
maps of a sample of clouds will help determine the frequency of this phenomenon
in other star forming regions.Comment: 48 pages in total: 16 pages of text and references; 2 pages of
tables; 30 figures (one page per figure). Accepted for publication in the
Astrophysical Journa