165 research outputs found

    Neutrophil survival on biomaterials is determined by surface topography

    Get PDF
    AbstractPurpose: Cardiovascular device-centered infections are a major cause of hospital morbidity, mortality, and expense. Caused by opportunistic bacteria, this phenomenon is thought to arise because of a defect in neutrophil bacterial killing. We have shown that neutrophils that adhere to polystyrene remain viable, whereas neutrophils that adhere to the vascular biomaterials expanded polytetrafluoroethylene (ePTFE) and Dacron undergo a rapid nonapoptotic death. This study was designed to test the hypothesis that surface topography is a determinant of the nonapoptotic death response of neutrophils to biomaterials. Methods: We took advantage of the ease with which a polystyrene surface can be manipulated to examine the effect of surface topography on neutrophil viability. Neutrophils were exposed to smooth or roughened polystyrene surfaces both in vivo and in vitro. Changes in cell membrane permeability and production of reactive oxygen species by individual cells were monitored with fluorescent dyes. Results: Host cells and isolated human neutrophils died rapidly after adhesion to roughened polystyrene. Neutrophils adherent to roughened surfaces produced more reactive oxygen intermediates than those adherent to smooth surfaces and were first to die. The cell death response precipitated by expanded polytetrafluoroethylene, Dacron, or the roughened surfaces was significantly reduced with treatment of the neutrophils with catalase, diphenylene iodonium, or the src kinase inhibitor PP2 before adhesion. Conclusions: Neutrophil adhesion to roughened materials triggers rapid production of reactive oxygen species and precipitates a nonapoptotic cell death. Understanding the material properties that trigger these responses is essential to development of the next generation of implantable biomaterials. (J Vasc Surg 2003;37:1082-90.

    Impact of mangrove forests degradation on biodiversity and ecosystem functioning

    Get PDF
    Abstract Mangroves are amongst the most productive marine ecosystems on Earth, providing a unique habitat opportunity for many species and key goods and services for human beings. Mangrove habitats are regressing at an alarming rate, due to direct anthropogenic impacts and global change. Here, in order to assess the effects of mangrove habitat degradation on benthic biodiversity and ecosystem functioning, we investigated meiofaunal biodiversity (as proxy of benthic biodiversity), benthic biomass and prokaryotic heterotrophic production (as proxies of ecosystem functioning) and trophic state in a disturbed and an undisturbed mangrove forests. We report here that disturbed mangrove area showed a loss of 20% of benthic biodiversity, with the local extinction of four Phyla (Cladocera, Kynorincha, Priapulida, Tanaidacea), a loss of 80% of microbial-mediated decomposition rates, of the benthic biomass and of the trophic resources. The results of this study strengthen the need to preserve mangrove forests and to restore those degraded to guarantee the provision of goods and services needed to support the biodiversity and functioning of wide portions of tropical ecosystems

    Accelerated Axonal Loss Following Acute CNS Demyelination in Mice Lacking Protein Tyrosine Phosphatase Receptor Type Z

    Get PDF
    Protein tyrosine phosphatase receptor type Z (Ptprz) is widely expressed in the mammalian central nervous system and has been suggested to regulate oligodendrocyte survival and differentiation. We investigated the role of Ptprz in oligodendrocyte remyelination after acute, toxin-induced demyelination in Ptprz null mice. We found neither obvious impairment in the recruitment of oligodendrocyte precursor cells, astrocytes, or reactive microglia/macrophage to lesions nor a failure for oligodendrocyte precursor cells to differentiate and remyelinate axons at the lesions. However, we observed an unexpected increase in the number of dystrophic axons by 3 days after demyelination, followed by prominent Wallerian degeneration by 21 days in the Ptprz-deficient mice. Moreover, quantitative gait analysis revealed a deficit of locomotor behavior in the mutant mice, suggesting increased vulnerability to axonal injury. We propose that Ptprz is necessary to maintain central nervous system axonal integrity in a demyelinating environment and may be an important target of axonal protection in inflammatory demyelinating diseases, such as multiple sclerosis and periventricular leukomalacia. (Am J Pathol 2012, 181:1518-1523; http://dx.doi.org/10.1016/j.ajpath.2012.07.011)UK Multiple Sclerosis SocietyMultiple Sclerosis International FederationUniv Cambridge, Dept Vet Med, Cambridge CB3 0ES, EnglandUniv Cambridge, Wellcome Trust & MRC Cambridge Stem Cell Inst, Cambridge CB3 0ES, EnglandUniversidade Federal de São Paulo, Dept Biosci, Santos, BrazilMerck Serono Int, Geneva Res Ctr, Geneva, SwitzerlandUniversidade Federal de São Paulo, Dept Biosci, Santos, BrazilWeb of Scienc

    Preclinical antimalarial combination studies: the case of M5717, a P. falciparum elongation factor 2 inhibitor and pyronaridine, a hemozoin formation inhibitor

    Get PDF
    Antimalarial drug resistance in the; Plasmodium falciparum; parasite poses a constant challenge for drug development. To mitigate this risk, new antimalarial medicines should be developed as fixed-dose combinations. Assessing the pharmacodynamic interactions of potential antimalarial drug combination partners during early phases of development is essential in developing the targeted parasitological and clinical profile of the final drug product. Here, we have studied the combination of M5717, a; P. falciparum; translation elongation factor 2 inhibitor, and pyronaridine, an inhibitor of hemozoin formation. Our test cascade consisted of; in vitro; isobolograms as well as; in vivo; studies in the; P. falciparum; severe combined immunodeficient (SCID) mouse model. We also analyzed pharmacokinetic and pharmacodynamic parameters, including genomic sequencing of recrudescent parasites. We observed no pharmacokinetic interactions with the combination of M5717 and pyronaridine. M5717 did not negatively impact the rate of kill of the faster-acting pyronaridine, and the latter was able to suppress the selection of M5717-resistant mutants, as well as significantly delay the recrudescence of parasites both with suboptimal and optimal dosing regimens

    Targeting COPZ1 non-oncogene addiction counteracts the viability of thyroid tumor cells

    Get PDF
    Thyroid carcinoma is generally associated with good prognosis, but no effective treatments are currently available for aggressive forms not cured by standard therapy. To find novel therapeutic targets for this tumor type, we had previously performed a siRNA-based functional screening to identify genes essential for sustaining the oncogenic phenotype of thyroid tumor cells, but not required to the same extent for the viability of normal cells (non-oncogene addiction paradigm). Among those, we found the coatomer protein complex ζ1 (COPZ1) gene, which is involved in intracellular traffic, autophagy and lipid homeostasis. In this paper, we investigated the mechanisms through which COPZ1 depletion leads to thyroid tumor cell death. We showed that siRNA-mediated COPZ1 depletion causes abortive autophagy, endoplasmic reticulum stress, unfolded protein response and apoptosis. Interestingly, we observed that mouse tumor xenografts, locally treated with siRNA targeting COPZ1, showed a significant reduction of tumor growth. On the whole, we demonstrated for the first time the crucial role of COPZ1 in the viability of thyroid tumor cells, suggesting that it may be considered an attractive target for novel therapeutic approaches for thyroid cancer

    Generation of human memory stem T cells after haploidentical T-replete hematopoietic stem cell transplantation

    Get PDF
    Memory stem T cells (TSCM) have been proposed as key determinants of immunologic memory. However, their exact contribution to a mounting immune response, as well as the mechanisms and timing of their in vivo generation, are poorly understood. We longitudinally tracked TSCM dynamics in patients undergoing haploidentical hematopoietic stem cell transplantation (HSCT), thereby providing novel hints on the contribution of this subset to posttransplant immune reconstitution in humans. We found that donor-derived TSCM are highly enriched early after HSCT. We showed at the antigen-specific and clonal level that TSCM lymphocytes can differentiate directly from naive precursors infused within the graft and that the extent of TSCM generation might correlate with interleukin 7 serum levels. In vivo fate mapping through T-cell receptor sequencing allowed defining the in vivo differentiation landscapes of human naive T cells, supporting the notion that progenies of single naive cells embrace disparate fates in vivo and highlighting TSCM as relevant novel players in the diversification of immunological memory after allogeneic HSCT

    Identifying volatile and non‐volatile organic compounds to discriminate cultivar, growth location, and stage of ripening in olive fruits and oils

    Get PDF
    BACKGROUND: There is increasing consumer demand for olive oil to be traceable. However, genotype, environmental factors, and stage of maturity, all affect the flavor and composition of both the olives and olive oil. Few studies have included all three variables. Key metabolites include lipids, phenolics, and a wide range of volatile organic compounds (VOCs), which provide the olives and oil with their characteristic flavor. Here we aim to identify markers that are able to discriminate between cultivars, that can identify growth location, and can discriminate stages of fruit maturity. ‘Nocellara messinese’ and ‘Carolea’ olive fruits were grown at three locations differing in altitude in Calabria, Italy, and harvested at three stages of maturity. Oil was analyzed from the two most mature stages. RESULTS: Nine and 20 characters discriminated all fruit and oil samples respectively, and relative abundance of two fatty acids distinguished all oils. Whole VOC profiles discriminated among the least mature olives, and oil VOC profiles discriminated location and cultivar at both stages. Three VOCs putatively identified as hexanal, methyl acetate, and 3-hexen-1-ol differentiated all samples of oils from the most mature fruit stage. CONCLUSION: The results confirm that interactions of location, cultivar and fruit maturity stage are critical for the overall pattern of aroma compounds, and identify potential markers of commercial relevance. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry

    Immunomics-guided discovery of serum and urine antibodies for diagnosing urogenital schistosomiasis:A biomarker identification study

    Get PDF
    Background: Sensitive diagnostics are needed for effective management and surveillance of schistosomiasis so that current transmission interruption goals set by WHO can be achieved. We aimed to screen the Schistosoma haematobium secretome to find antibody biomarkers of schistosome infection, validate their diagnostic performance in samples from endemic populations, and evaluate their utility as point of care immunochromatographic tests (POC-ICTs) to diagnose urogenital schistosomiasis in the field. Methods: We did a biomarker identification study, in which we constructed a proteome array containing 992 validated and predicted proteins from S haematobium and screened it with serum and urine antibodies from endemic populations in Gabon, Tanzania, and Zimbabwe. Arrayed antigens that were IgG-reactive and a select group of antigens from the worm extracellular vesicle proteome, predicted to be diagnostically informative, were then evaluated by ELISA using the same samples used to probe arrays, and samples from individuals residing in a low-endemicity setting (ie, Pemba and Unguja islands, Zanzibar, Tanzania). The two most sensitive and specific antigens were incorporated into POC-ICTs to assess their ability to diagnose S haematobium infection from serum in a field-deployable format. Findings: From array probing, in individuals who were infected, 208 antigens were the targets of significantly elevated IgG responses in serum and 45 antigens were the targets of significantly elevated IgG responses in urine. Of the five proteins that were validated by ELISA, Sh-TSP-2 (area under the curve [AUC]serum=0·98 [95% CI 0·95-1·00]; AUCurine=0·96 [0·93-0·99]), and MS3_01370 (AUCserum=0·93 [0·89-0·97]; AUCurine=0·81 [0·72-0·89]) displayed the highest overall diagnostic performance in each biofluid and exceeded that of S haematobium-soluble egg antigen in urine (AUC=0·79 [0·69-0·90]). When incorporated into separate POC-ICTs, Sh-TSP-2 showed absolute specificity and a sensitivity of 75% and MS3_01370 showed absolute specificity and a sensitivity of 89%. Interpretation: We identified numerous biomarkers of urogenital schistosomiasis that could form the basis of novel antibody diagnostics for this disease. Two of these antigens, Sh-TSP-2 and MS3_01370, could be used as sensitive, specific, and field-deployable diagnostics to support schistosomiasis control and elimination initiatives, with particular focus on post-elimination surveillance. Funding: Australian Trade and Investment Commission and Merck Global Health Institute
    corecore