602 research outputs found
An Economic Study of the Effect of Android Platform Fragmentation on Security Updates
Vendors in the Android ecosystem typically customize their devices by
modifying Android Open Source Project (AOSP) code, adding in-house developed
proprietary software, and pre-installing third-party applications. However,
research has documented how various security problems are associated with this
customization process.
We develop a model of the Android ecosystem utilizing the concepts of game
theory and product differentiation to capture the competition involving two
vendors customizing the AOSP platform. We show how the vendors are incentivized
to differentiate their products from AOSP and from each other, and how prices
are shaped through this differentiation process. We also consider two types of
consumers: security-conscious consumers who understand and care about security,
and na\"ive consumers who lack the ability to correctly evaluate security
properties of vendor-supplied Android products or simply ignore security. It is
evident that vendors shirk on security investments in the latter case.
Regulators such as the U.S. Federal Trade Commission have sanctioned Android
vendors for underinvestment in security, but the exact effects of these
sanctions are difficult to disentangle with empirical data. Here, we model the
impact of a regulator-imposed fine that incentivizes vendors to match a minimum
security standard. Interestingly, we show how product prices will decrease for
the same cost of customization in the presence of a fine, or a higher level of
regulator-imposed minimum security.Comment: 22nd International Conference on Financial Cryptography and Data
Security (FC 2018
The effect of social media communication on consumer perceptions of brands
Researchers and brand managers have limited understanding of the effects social media communication has on how consumers perceive brands. We investigated 504 Facebook users in order to observe the impact of firm-created and user-generated social media communication on brand equity, brand attitude and purchase intention by using a standardized online survey throughout Poland. To test the conceptual model, we analyzed 60 brands across three different industries: non-alcoholic beverages, clothing and mobile network operators. When analyzing the data, we applied the structural equation modeling technique to both investigate the interplay of firm-created and user-generated social media communication and examine industry-specific differences. The results of the empirical studies showed that user-generated social media communication had a positive influence on both brand equity and brand attitude, whereas firm-created social media communication affected only brand attitude. Both brand equity and brand attitude were shown to have a positive influence on purchase intention. In addition, we assessed measurement invariance using a multi-group structural modeling equation. The findings revealed that the proposed measurement model was invariant across the researched industries. However, structural path differences were detected across the models
Nanomaterial interactions with biomembranes: Bridging the gap between soft matter models and biological context
Synthetic polymers, nanoparticles, and carbon-based materials have great potential in applications including drug delivery, gene transfection, in vitro and in vivo imaging, and the alteration of biological function. Nature and humans use different design strategies to create nanomaterials: biological objects have emerged from billions of years of evolution and from adaptation to their environment resulting in high levels of structural complexity; in contrast, synthetic nanomaterials result from minimalistic but controlled design options limited by the authors' current understanding of the biological world. This conceptual mismatch makes it challenging to create synthetic nanomaterials that possess desired functions in biological media. In many biologically relevant applications, nanomaterials must enter the cell interior to perform their functions. An essential transport barrier is the cell-protecting plasma membrane and hence the understanding of its interaction with nanomaterials is a fundamental task in biotechnology. The authors present open questions in the field of nanomaterial interactions with biological membranes, including: how physical mechanisms and molecular forces acting at the nanoscale restrict or inspire design options; which levels of complexity to include next in computational and experimental models to describe how nanomaterials cross barriers via passive or active processes; and how the biological media and protein corona interfere with nanomaterial functionality. In this Perspective, the authors address these questions with the aim of offering guidelines for the development of next-generation nanomaterials that function in biological media
Spin, charge and orbital ordering in ferrimagnetic insulator YBaMnO
The oxygen-deficient (double) perovskite YBaMnO, containing
corner-linked MnO square pyramids, is found to exhibit ferrimagnetic
ordering in its ground state. In the present work we report
generalized-gradient-corrected, relativistic first-principles full-potential
density-functional calculations performed on YBaMnO in the nonmagnetic,
ferromagnetic and ferrimagnetic states. The charge, orbital and spin orderings
are explained with site-, angular momentum- and orbital-projected density of
states, charge-density plots, electronic structure and total energy studies.
YBaMnO is found to stabilize in a G-type ferrimagnetic state in
accordance with experimental results. The experimentally observed insulating
behavior appears only when we include ferrimagnetic ordering in our
calculation. We observed significant optical anisotropy in this material
originating from the combined effect of ferrimagnetic ordering and crystal
field splitting. In order to gain knowledge about the presence of different
valence states for Mn in YBaMnO we have calculated -edge x-ray
absorption near-edge spectra for the Mn and O atoms. The presence of the
different valence states for Mn is clearly established from the x-ray
absorption near-edge spectra, hyperfine field parameters and the magnetic
properties study. Among the experimentally proposed structures, the recently
reported description based on 4/ is found to represent the stable
structure
?2-Microglobulin Amyloid Fibril-Induced Membrane Disruption Is Enhanced by Endosomal Lipids and Acidic pH
Although the molecular mechanisms underlying the pathology of amyloidoses are not well understood, the interaction between amyloid proteins and cell membranes is thought to play a role in several amyloid diseases. Amyloid fibrils of ?2-microglobulin (?2m), associated with dialysis-related amyloidosis (DRA), have been shown to cause disruption of anionic lipid bilayers in vitro. However, the effect of lipid composition and the chemical environment in which ?2m-lipid interactions occur have not been investigated previously. Here we examine membrane damage resulting from the interaction of ?2m monomers and fibrils with lipid bilayers. Using dye release, tryptophan fluorescence quenching and fluorescence confocal microscopy assays we investigate the effect of anionic lipid composition and pH on the susceptibility of liposomes to fibril-induced membrane damage. We show that ?2m fibril-induced membrane disruption is modulated by anionic lipid composition and is enhanced by acidic pH. Most strikingly, the greatest degree of membrane disruption is observed for liposomes containing bis(monoacylglycero)phosphate (BMP) at acidic pH, conditions likely to reflect those encountered in the endocytic pathway. The results suggest that the interaction between ?2m fibrils and membranes of endosomal origin may play a role in the molecular mechanism of ?2m amyloid-associated osteoarticular tissue destruction in DRA
Flowering Time Diversification and Dispersal in Central Eurasian Wild Wheat Aegilops tauschii Coss.: Genealogical and Ecological Framework
Timing of flowering is a reproductive trait that has significant impact on fitness in plants. In contrast to recent advances in understanding the molecular basis of floral transition, few empirical studies have addressed questions concerning population processes of flowering time diversification within species. We analyzed chloroplast DNA genealogical structure of flowering time variation in central Eurasian wild wheat Aegilops tauschii Coss. using 200 accessions that represent the entire species range. Flowering time measured as days from germination to flowering varied from 144.0 to 190.0 days (average 161.3 days) among accessions in a common garden/greenhouse experiment. Subsequent genealogical and statistical analyses showed that (1) there exist significant longitudinal and latitudinal clines in flowering time at the species level, (2) the early-flowering phenotype evolved in two intraspecific lineages, (3) in Asia, winter temperature was an environmental factor that affected the longitudinal clinal pattern of flowering time variation, and (4) in Transcaucasus-Middle East, some latitudinal factors affected the geographic pattern of flowering time variation. On the basis of palaeoclimatic, biogeographic, and genetic evidence, the northern part of current species' range [which was within the temperate desert vegetation (TDV) zone at the Last Glacial Maximum] is hypothesized to have harbored species refugia. Postglacial southward dispersal from the TDV zone seems to have been driven by lineages that evolved short-flowering-time phenotypes through different genetic mechanisms in Transcaucasus-Middle East and Asia
'The Germans are Hydrophobes': Germany and the Germans in the Shaping of French Identity
This article addresses issues of national identity and nationalism in the age of the French Revolution by looking at French attitudes towards the Germans. It engages with theories of nationalism while presenting empirical evidence gleaned from archival research. This material, sometimes grimly, sometimes rather amusingly, reveals much about French ideas and prejudices about the Germans and how it reflected back on the revolutionary and Napoleonic sense of what it meant to be French
NF-kappaB Mediated Transcriptional Repression of Acid Modifying Hormone Gastrin
Helicobacter pylori is a major pathogen associated with the development of gastroduodenal diseases. It has been
reported that H. pylori induced pro-inflammatory cytokine IL1B is one of the various modulators of acid secretion in
the gut. Earlier we reported that IL1B-activated NFkB down-regulates gastrin, the major hormonal regulator of acid
secretion. In this study, the probable pathway by which IL1B induces NFkB and affects gastrin expression has been
elucidated. IL1B-treated AGS cells showed nine-fold activation of MyD88 followed by phosphorylation of TAK1 within
15 min of IL1B treatment. Furthermore, it was observed that activated TAK1 significantly up-regulates the NFkB
subunits p50 and p65. Ectopic expression of NFkB p65 in AGS cells resulted in about nine-fold transcriptional
repression of gastrin both in the presence and absence of IL1B. The S536A mutant of NFkB p65 is significantly less
effective in repressing gastrin. These observations show that a functional NFkB p65 is important for IL1B-mediated
repression of gastrin. ChIP assays revealed the presence of HDAC1 and NFkB p65 along with NCoR on the gastrin
promoter. Thus, the study provides mechanistic insight into the IL1B-mediated gastrin repression via NFk
- …