11 research outputs found

    The phosphatidylserine receptor has essential functions during embryogenesis but not in apoptotic cell removal

    Get PDF
    BACKGROUND: Phagocytosis of apoptotic cells is fundamental to animal development, immune function and cellular homeostasis. The phosphatidylserine receptor (Ptdsr) on phagocytes has been implicated in the recognition and engulfment of apoptotic cells and in anti-inflammatory signaling. To determine the biological function of the phosphatidylserine receptor in vivo, we inactivated the Ptdsr gene in the mouse. RESULTS: Ablation of Ptdsr function in mice causes perinatal lethality, growth retardation and a delay in terminal differentiation of the kidney, intestine, liver and lungs during embryogenesis. Moreover, eye development can be severely disturbed, ranging from defects in retinal differentiation to complete unilateral or bilateral absence of eyes. Ptdsr (-/-) mice with anophthalmia develop novel lesions, with induction of ectopic retinal-pigmented epithelium in nasal cavities. A comprehensive investigation of apoptotic cell clearance in vivo and in vitro demonstrated that engulfment of apoptotic cells was normal in Ptdsr knockout mice, but Ptdsr-deficient macrophages were impaired in pro- and anti-inflammatory cytokine signaling after stimulation with apoptotic cells or with lipopolysaccharide. CONCLUSION: Ptdsr is essential for the development and differentiation of multiple organs during embryogenesis but not for apoptotic cell removal. Ptdsr may thus have a novel, unexpected developmental function as an important differentiation-promoting gene. Moreover, Ptdsr is not required for apoptotic cell clearance by macrophages but seems to be necessary for the regulation of macrophage cytokine responses. These results clearly contradict the current view that the phosphatidylserine receptor primarily functions in apoptotic cell clearance

    Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel

    Get PDF
    Imputing genotypes from reference panels created by whole-genome sequencing (WGS) provides a cost-effective strategy for augmenting the single-nucleotide polymorphism (SNP) content of genome-wide arrays. The UK10K Cohorts project has generated a data set of 3,781 whole genomes sequenced at low depth (average 7x), aiming to exhaustively characterize genetic variation down to 0.1% minor allele frequency in the British population. Here we demonstrate the value of this resource for improving imputation accuracy at rare and low-frequency variants in both a UK and an Italian population. We show that large increases in imputation accuracy can be achieved by re-phasing WGS reference panels after initial genotype calling. We also present a method for combining WGS panels to improve variant coverage and downstream imputation accuracy, which we illustrate by integrating 7,562 WGS haplotypes from the UK10K project with 2,184 haplotypes from the 1000 Genomes Project. Finally, we introduce a novel approximation that maintains speed without sacrificing imputation accuracy for rare variants

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.

    Get PDF
    BACKGROUND: A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. METHODS: This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. FINDINGS: Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0-75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4-97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8-80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3-4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. INTERPRETATION: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials. FUNDING: UK Research and Innovation, National Institutes for Health Research (NIHR), Coalition for Epidemic Preparedness Innovations, Bill & Melinda Gates Foundation, Lemann Foundation, Rede D'Or, Brava and Telles Foundation, NIHR Oxford Biomedical Research Centre, Thames Valley and South Midland's NIHR Clinical Research Network, and AstraZeneca

    Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK

    Get PDF
    Background A safe and efficacious vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), if deployed with high coverage, could contribute to the control of the COVID-19 pandemic. We evaluated the safety and efficacy of the ChAdOx1 nCoV-19 vaccine in a pooled interim analysis of four trials. Methods This analysis includes data from four ongoing blinded, randomised, controlled trials done across the UK, Brazil, and South Africa. Participants aged 18 years and older were randomly assigned (1:1) to ChAdOx1 nCoV-19 vaccine or control (meningococcal group A, C, W, and Y conjugate vaccine or saline). Participants in the ChAdOx1 nCoV-19 group received two doses containing 5 × 1010 viral particles (standard dose; SD/SD cohort); a subset in the UK trial received a half dose as their first dose (low dose) and a standard dose as their second dose (LD/SD cohort). The primary efficacy analysis included symptomatic COVID-19 in seronegative participants with a nucleic acid amplification test-positive swab more than 14 days after a second dose of vaccine. Participants were analysed according to treatment received, with data cutoff on Nov 4, 2020. Vaccine efficacy was calculated as 1 - relative risk derived from a robust Poisson regression model adjusted for age. Studies are registered at ISRCTN89951424 and ClinicalTrials.gov, NCT04324606, NCT04400838, and NCT04444674. Findings Between April 23 and Nov 4, 2020, 23 848 participants were enrolled and 11 636 participants (7548 in the UK, 4088 in Brazil) were included in the interim primary efficacy analysis. In participants who received two standard doses, vaccine efficacy was 62·1% (95% CI 41·0–75·7; 27 [0·6%] of 4440 in the ChAdOx1 nCoV-19 group vs71 [1·6%] of 4455 in the control group) and in participants who received a low dose followed by a standard dose, efficacy was 90·0% (67·4–97·0; three [0·2%] of 1367 vs 30 [2·2%] of 1374; pinteraction=0·010). Overall vaccine efficacy across both groups was 70·4% (95·8% CI 54·8–80·6; 30 [0·5%] of 5807 vs 101 [1·7%] of 5829). From 21 days after the first dose, there were ten cases hospitalised for COVID-19, all in the control arm; two were classified as severe COVID-19, including one death. There were 74 341 person-months of safety follow-up (median 3·4 months, IQR 1·3–4·8): 175 severe adverse events occurred in 168 participants, 84 events in the ChAdOx1 nCoV-19 group and 91 in the control group. Three events were classified as possibly related to a vaccine: one in the ChAdOx1 nCoV-19 group, one in the control group, and one in a participant who remains masked to group allocation. Interpretation ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials

    Production of prostaglandin D synthase as a keratan sulfate proteoglycan by cultured bovine keratocytes Invest Ophthalmol Vis Sci 42(6

    No full text
    PURPOSE. To characterize the major proteoglycans produced and secreted by collagenase-isolated bovine keratocytes in culture. METHODS. Freshly isolated keratocytes from mature bovine corneas were cultured in serum-free Dulbecco's modified Eagle's medium/ F12. Secreted proteoglycans were radiolabeled with protein labeling mix ( 35 S-Express; Dupont NEN Life Science Products, Boston, MA) and digested with chondroitinase ABC, keratanase, and endo-␤-galactosidase to remove glycosaminoglycan chains, and core proteins were analyzed by autoradiography and Western blot analysis. An unidentified keratan sulfate proteoglycan (KSPG) was purified by gel filtration (Superose 6; Amersham Pharmacia, Piscataway, NJ) and anionexchange chromatography (Resource Q; Amersham Pharmacia) and subjected to amino acid sequencing. RESULTS. Keratanase digestion of proteoglycans produced ϳ50 kDa core proteins that immunoreacted with antisera to lumican, keratocan, and osteoglycin-mimecan. Chondroitinase ABC digestion produced a ϳ55-kDa core protein that immunoreacted with antisera to decorin. A 28-kDa band generated by keratanase or endo-␤-galactosidase digestion did not react with these antibodies. Chromatographic purification and amino acid sequencing revealed that the protein was prostaglandin D synthase (PGDS). Identity was confirmed by Western blot analysis using antisera to recombinant PGDS. PGDS isolated from corneal extracts was not keratanase sensitive but was susceptible to endo-␤-galactosidase, suggesting that it contains unsulfated polylactosamine chains in native tissue and is therefore present as a glycoprotein. CONCLUSIONS. These results indicate that bovine keratocytes, when cultured under serum-free conditions, produce the four known leucine-rich proteoglycans decorin, keratocan, lumican, and osteoglycin/mimecan and maintain a phenotype that is comparable to that of in situ keratocytes. Additionally, these cells produce PGDS, a known retinoid transporter, as a KSPG. (Invest Ophthalmol Vis Sci. 2001;42:1201-1207 K eratocytes, the principal cell type of the adult corneal stroma, are responsible for producing the extensive and uniquely transparent extracellular matrix of the corneal stroma. 1,2 The keratocytes in adult corneas are quiescent, but on stromal wounding are activated, proliferate, become fibroblasts and myofibroblasts, migrate to the wound site, 3,4 and produce a disorganized extracellular matrix 5 without keratan sulfate 6 -factors that probably contribute to the formation of an opaque scar in the cornea. Keratocytes that have been isolated from the stroma and cultured under standard conditions exhibit characteristics of the fibroblast and myofibroblast phenotypes, including cell shape, the presence of ␣-smooth muscle actin, low levels of keratan sulfate production, expression of the fibronectin receptor, and extensive cell proliferation. 7-11 These cells are not useful for studying properties of the keratocytes that produce corneal transparency. Recent studies, however, indicate that collagenase-isolated keratocytes plated in media without fetal bovine serum do not become fibroblasts or myofibroblasts in culture. Collagenase-isolated rabbit keratocytes cultured in serum-free media do not proliferate, appear dendritic, and have no ␣-smooth muscle actin. 12 Similarly, isolated and cultured bovine keratocytes do not proliferate, appear dendritic, and synthesize high levels of keratan sulfate proteoglycans (KSPGs). This new serum-free keratocyte culturing method provides an opportunity to more fully characterize the keratocyte phenotype and its transition to other phenotypes. In this report, we identify the major secreted proteoglycans of keratocytes in serum-free cell culture and find that the keratocytes make all four previously identified corneal stroma proteoglycans: decorin, lumican, keratocan, and osteoglycin. In addition, they make a novel small KSPG that has been identified as prostaglandin D synthase (PGDS), a secreted product that has not been previously shown to be made by cultured keratocytes or made as a proteoglycan. MATERIALS AND METHODS Keratocyte Isolation and Culture Bovine keratocytes were isolated using a modification of a collagenase digestion method, 13 using only two sequential digestions. Briefly, corneas were procured from twenty-four freshly harvested, adult bovine eyes (Pel-Freeze Biologicals, Rogers, AR), and three 8-mm disks were removed from the central region of each and processed as described before. Two equivalent groups of quartered discs were subjected to collagenase digestion for 30 to 45 minutes at 37°C with shaking at 142 rpm to remove epithelial and endothelial cells. A second digestion with 36 ml of fresh collagenase solution proceeded for 150 minutes under identical conditions. Cells from the second digestion were pelleted by low-speed centrifugation and resuspended in Dulbecco's modified Eagle medium/F-12 (DMEM/F-12, Gibco-Life Technologies, Grand Island, NY). Cell number and viability were determined using trypan blue exclusion. After a second low-speed centrifugation, cells were resuspended in DMEM/F-12 supplemented with 1% platelet-poor horse serum (PPHS; Sigma, St. Louis, MO), plated into six-well tissue culture dishes (Costar, Cambridge, MA) at high density (400,000 cells/well) and allowed to attach overnight at 37°C in 5% CO 2 . Media (2 ml/well) were changed to DMEM/F-12, and incubation proceeded until day 4

    INPP5E mutations cause primary cilium signaling defects, ciliary instability and ciliopathies in human and mouse

    No full text
    The primary cilium is an antenna-like structure that protrudes from the cell surface of quiescent/differentiated cells and participates in extracellular signal processing. Here, we report that mice deficient for the lipid 5-phosphatase Inpp5e develop a multiorgan disorder associated with structural defects of the primary cilium. In ciliated mouse embryonic fibroblasts, Inpp5e is concentrated in the axoneme of the primary cilium. Inpp5e inactivation did not impair ciliary assembly but altered the stability of pre-established cilia after serum addition. Blocking phosphoinositide 3-kinase (PI3K) activity or ciliary platelet-derived growth factor receptor (PDGFR) restored ciliary stability. In human INPP5E, we identified a mutation affecting INPP5E ciliary localization and cilium stability in a family with MORM syndrome, a condition related to Bardet-Biedl syndrome. Together, our results show that INPP5E plays an essential role in the primary cilium by controlling ciliary growth factor and PI3K signaling and stability, and highlight the consequences of INPP5E dysfunction
    corecore