673 research outputs found

    Electromechanical Imaging of Biological Systems with Sub-10 nm Resolution

    Get PDF
    Electromechanical imaging of tooth dentin and enamel has been performed with sub-10 nm resolution using piezoresponse force microscopy. Characteristic piezoelectric domain size and local protein fiber ordering in dentin have been determined. The shape of a single collagen fibril in enamel is visualized in real space and local hysteresis loops are measured. Because of the ubiquitous presence of piezoelectricity in biological systems, this approach is expected to find broad application in high-resolution studies of a wide range of biomaterials.Comment: 12 pages, 4 figures, submitted for publication in Appl. Phys. Let

    Spin-to-Orbital Angular Momentum Conversion in Semiconductor Microcavities

    Get PDF
    We experimentally demonstrate a technique for the generation of optical beams carrying orbital angular momentum using a planar semiconductor microcavity. Despite being isotropic systems, the transverse electric - transverse magnetic (TE-TM) polarization splitting featured by semiconductor microcavities allows for the conversion of the circular polarization of an incoming laser beam into the orbital angular momentum of the transmitted light field. The process implies the formation of topological entities, a pair of optical half-vortices, in the intracavity field

    Quantized Rotation of Atoms From Photons with Orbital Angular Momentum

    Get PDF
    We demonstrate the coherent transfer of the orbital angular momentum of a photon to an atom in quantized units of hbar, using a 2-photon stimulated Raman process with Laguerre-Gaussian beams to generate an atomic vortex state in a Bose-Einstein condensate of sodium atoms. We show that the process is coherent by creating superpositions of different vortex states, where the relative phase between the states is determined by the relative phases of the optical fields. Furthermore, we create vortices of charge 2 by transferring to each atom the orbital angular momentum of two photons.Comment: New version, 4 pages and 3 figures, accepted for publication in Physical Review Letter

    Spin-polarized tunneling spectroscopic studies of the intrinsic heterogeneity and pseudogap phenomena in colossal magnetoresistive manganite La_{0.7}Ca_{0.3}MnO_{3}

    Get PDF
    Spatially resolved tunneling spectroscopic studies of colossal magnetoresistive (CMR) manganite La0.7Ca0.3MnO3\rm La_{0.7}Ca_{0.3}MnO_3 (LCMO) epitaxial films on (LaAlO3)0.3(Sr2AlTaO6)0.7\rm (LaAlO_3)_{0.3}(Sr_2AlTaO_6)_{0.7} substrate are investigated as functions of temperature, magnetic field and spin polarization by means of scanning tunneling spectroscopy. Systematic surveys of the tunneling spectra taken with Pt/Ir tips reveal spatial variations on the length scale of a few hundred nanometers in the ferromagnetic state, which may be attributed to the intrinsic heterogeneity of the manganites due to their tendency towards phase separation. The electronic heterogeneity is found to decrease either with increasing field at low temperatures or at temperatures above all magnetic ordering temperatures. On the other hand, spectra taken with Cr-coated tips are consistent with convoluted electronic properties of both LCMO and Cr. In particular, for temperatures below the magnetic ordering temperatures of both Cr and LCMO, the magnetic-field dependent tunneling spectra may be quantitatively explained by the scenario of spin-polarized tunneling in a spin-valve configuration. Moreover, a low-energy insulating energy gap 0.6\sim 0.6 eV commonly found in the tunneling conductance spectra of bulk metallic LCMO at T0T \to 0 may be attributed to a surface ferromagnetic insulating (FI) phase, as evidenced by its spin filtering effect at low temperatures and vanishing gap value above the Curie temperature. Additionally, temperature independent pseudogap (PG) phenomena existing primarily along the boundaries of magnetic domains are observed in the zero-field tunneling spectra. The PG becomes strongly suppressed by applied magnetic fields at low temperatures when the tunneling spectra of LCMO become highly homogeneous. These findings suggest that the occurrence PG is associated with the electronic heterogeneity of the manganites.Comment: 15 pages, 15 figures. Published in Physical Review B. Corresponding author: Nai-Chang Yeh (E-mail: [email protected]

    Infrared studies of a La_(0.67)Ca_(0.33)MnO_3 single crystal: Optical magnetoconductivity in a half-metallic ferromagnet

    Get PDF
    The infrared reflectivity of a La_(0.67)Ca_(0.33)MnO_3 single crystal is studied over a broad range of temperatures (78–340 K), magnetic fields (0–16 T), and wave numbers (20–9000cm^(-1)). The optical conductivity gradually changes from a Drude-like behavior to a broad peak feature near 5000cm-1 in the ferromagnetic state below the Curie temperature T_C=307K. Various features of the optical conductivity bear striking resemblance to recent theoretical predictions based on the interplay between the double exchange interaction and the Jahn-Teller electron-phonon coupling. A large optical magnetoconductivity is observed near T_C

    Infrared Studies of a La_{0.67}Ca_{0.33}MnO_3 Single Crystal: Optical Magnetoconductivity in a Half-Metallic Ferromagnet

    Get PDF
    The infrared reflectivity of a La0.67Ca0.33MnO3\rm La_{0.67}Ca_{0.33}MnO_3 single crystal is studied over a broad range of temperatures (78-340 K), magnetic fields (0-16 T), and wavenumbers (20-9000 cm1^{-1}). The optical conductivity gradually changes from a Drude-like behavior to a broad peak feature near 5000 cm1^{-1} in the ferromagnetic state below the Curie temperature TC=307KT_C=307 K. Various features of the optical conductivity bear striking resemblance to recent theoretical predictions based on the interplay between the double exchange interaction and the Jahn-Teller electron-phonon coupling. A large optical magnetoconductivity is observed near TCT_C.Comment: 4 pages, 4 figures, Latex, PostScript; The 7th Joint MMM-Intermag Conference,San Francisco, January 6-9, 1998; The Int. Conf. on Strongly Correlated Electron Systems, Paris, July 15-18,199

    Discontinuous Bifurcations under 2-DOF Vibroimpact System Moving

    Get PDF
    Dynamic behaviour of strongly nonlinear non-smooth discontinuous vibroimpact system isstudied. Under variation of system parameters we find the disconti nuousbi furcati onsthat are the dangerousones. It is phenomenon unique to non-smooth systems with discontinuous right-hand side. We investigate the 2-DOF vibroimpact system by numerical parameter continuation method in conjunction with shooting and Newton-Raphson methods, Wife simulate the impact by nonlinear contact interactive force according to Hertz's contact law. We find the discontinuous bifurcations by Floquet multipliers values. At such points set-valued Floquet multipliers cross the unit circle by jump that istheir moduli becoming more than unit by jump. Wealso learn the bifurcation picture change when the impact between system bodi es became the soft one due the change of system parameters, This paper is the continuation of the previous works

    Corrosion resistance of alloys of Hastelloy in chloroaluminate melts

    Full text link
    The corrosion of Hastelloy S, Hastelloy X, Haynes 230, Hastelloy N, Hastelloy G35 and Hastelloy C2000 alloys was studied in KCl-AlCl3 melts at 550°С. The rates and the mechanisms of corrosion of the studied materials were determined. The processes taking place during the interaction between alloys and chloroaluminate melts were investigated

    Formation of metallic magnetic clusters in a Kondo-lattice metal: Evidence from an optical study

    Get PDF
    Magnetic materials are usually divided into two classes: those with localised magnetic moments, and those with itinerant charge carriers. We present a comprehensive experimental (spectroscopic ellipsomerty) and theoretical study to demonstrate that these two types of magnetism do not only coexist but complement each other in the Kondo-lattice metal, Tb2PdSi3. In this material the itinerant charge carriers interact with large localised magnetic moments of Tb(4f) states, forming complex magnetic lattices at low temperatures, which we associate with self-organisation of magnetic clusters. The formation of magnetic clusters results in low-energy optical spectral weight shifts, which correspond to opening of the pseudogap in the conduction band of the itinerant charge carriers and development of the low- and high-spin intersite electronic transitions. This phenomenon, driven by self-trapping of electrons by magnetic fluctuations, could be common in correlated metals, including besides Kondo-lattice metals, Fe-based and cuprate superconductors.Comment: 30 pages, 6 Figure
    corecore