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Spin-to-orbital angular momentum conversion in semiconductor microcavities
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We experimentally demonstrate a technique for the generation of optical beams carrying orbital angular
momentum using a planar semiconductor microcavity. Despite being isotropic systems with no structural
gyrotropy, semiconductor microcavities, because of the transverse-electric–transverse-magnetic polarization
splitting that they feature, allow for the conversion of the circular polarization of an incoming laser beam
into the orbital angular momentum of the transmitted light field. The process implies the formation of topological
entities, a pair of optical vortices, in the intracavity field.
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It is well known that photons can carry both an intrinsic
spin and orbital angular momentum.1 Both the intrinsic spin2

and the orbital angular momentum3 can generate a torque on
macroscopic objects, which could provide the optical drive
of micromachines4 and Doppler shifts of spinning bodies.5,6

It has also been shown that orbital angular momentum can
be coherently transferred to atoms,7 allowing, in principle,
the storage of high-dimensional quantum information. In fact,
while the spin angular momentum is restricted to ±h̄ for each
photon, the orbital angular momentum can take any multiple of
h̄. Moreover, again in a view of quantum computation applica-
tions, entanglement between orbital angular momentum states
has been experimentally demonstrated.8 Further applications
of beams carrying orbital angular momentum appear in
microscopy1 and ultrasensitive interferometry suitable for
gravitational wave detection.9

The first-ever implementation of a laser beam carrying
orbital angular momentum was achieved by shining a standard
laser beam through a system of lenses.10 Later developments
showed that individual optical components such as spiral wave
plates11,12 or holograms with forklike dislocations13 could
achieve the same task. More recently, more compact com-
ponents based on birefringent materials have been used.14,15

It is notable that all known techniques for the creation of
beams with orbital angular momentum require an optically
inhomogeneous and/or anisotropic material. Strong focusing
can also be used to generate such beams,16 as accurately
modeled by theory.17,18

In this Rapid Communication, we demonstrate that con-
version of spin into orbital angular momentum can also be
achieved, in the linear regime, with a planar semiconductor
microcavity19—a compact, layered nanostructure, acting as
a single optical element. At first sight, such conversion is
unexpected since a semiconductor microcavity is a planar
isotropic system, which features no structural gyrotropy, as
it is characterized by a diagonal susceptibility tensor in the
linear polarization basis. However, microcavities exhibit a
polarization splitting between transverse-electric (TE) and
transverse-magnetic (TM) polarized modes,20 which can be

represented by an effective magnetic field, the direction of
which depends on the reciprocal space position excited21

despite the isotropic nature of the microcavity [Fig. 1(a)].
This directional dependence arises from the choice of a fixed
coordinate system when defining the TE–TM basis, and it
does not represent a breaking of the rotational symmetry
of the system. This effective magnetic field is responsible
for polarized pattern formation,22 the “all-optical” spin Hall
effect,23 and has been predicted to allow conversion between
spin and orbital angular momentum.24 The effect of the
TE-TM splitting on a circularly polarized distribution can be
understood intuitively from Fig. 1, which shows the Stokes
vectors for light excited on a ring in reciprocal space [the
Stokes vectors represent the polarization state of a light mode
on the Poincaré sphere as shown in Fig. 1(b)]. While a fully
circularly polarized distribution would be characterized by
Stokes vectors pointing in the vertical direction (white arrows
in Fig. 1), their precession about the effective magnetic fields
causes them to evolve in different directions. A polarization
component of opposite circularity develops and the phase
profile can become dependent on the angle, as we will
show. The process conserves the total angular momentum
(spin + orbital angular momentum) via spin-to-orbital angular
momentum (SOAM) conversion. We provide a theoretical
model that is able to quantitatively reproduce the experimental
observations.

Formally, under a resonant optical excitation, the dynamics
of the intracavity field is given by the two-component
Schrödinger equation

ih̄
∂ψ±(k,t)

∂t
= E(k)ψ±(k,t) +

(
�(k)

2
e∓2iφ + ξ

2

)
ψ∓(k,t)

+ f±(k,t), (1)

where ± represents the two circularly polarized components
of the field ψ±(k,t). The two-dimensional (2D) in-plane
wave vector k = (k,φ) is divided into a radial component k

and angular component φ. E(k) = Ec − ih̄� represents the
complex in-plane dispersion of the cavity mode, where the
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FIG. 1. (Color online) (a) Illustration of the k-dependent effect of
the effective magnetic field (TE–TM splitting) on the Stokes vector
of the photons [in black: effective magnetic field; in white: initial
Stokes vector orientation; in red (dark gray): rotated Stokes vector].
The parabolic dispersion of the cavity mode is sketched in black solid
lines. (b) Mapping of the Stokes vectors to the Poincaré sphere [same
color code as in (a)].

imaginary component accounts for the decay of photons with
rate 2�. �(k) and ξ represent the strength of the k-dependent
TE–TM polarization splitting20 and a possible additional
splitting due to anisotropy,25 respectively. The anisotropy
term is needed to take into account the small residual linear
polarization splitting of real samples. The angular dependence
of the TE–TM splitting is equivalent to that represented by the
effective magnetic field in Fig. 1(b) of Ref. 21. The pumping
term can be written as25

f±(r,t) = A±e−r2/L2
e−iβr2

e−iEpt/h̄,
(2)

f±(k,t) =
∫

f±(r,t)
i�e−iEpt/h̄

E(k) − Ep

dr eik·r,

which corresponds to a monochromatic focused Gaussian
beam with amplitudes A±, spot size L, and energy Ep (e−iβr2

accounts for the wavefront curvature). Considering a circularly
polarized pump with A− = 0, the steady-state solution of
Eq. (1) is given by the equations

ψ−(k,t) = −�(k)e2iφ + ξ

E(k)
ψ+(k,t), (3)

ψ+(k,t) = − f+(k,t)

E(k) − [�(k)e−2iφ+ξ ][�(k)e2iφ+ξ ]
E(k)

. (4)

In the limit ξ �→ 0, where the anisotropy term is neglected,
Eq. (4) becomes independent of φ, that is, the σ+ polarized
cavity field (the same polarization as the pump) does not carry
orbital angular momentum. However, it is seen from Eq. (3)
that the σ− component carries orbital angular momentum
due to the phase profile e2iφ . This phase winding structure
corresponds to vortical entities in the optical transmitted
signal that are associated with the generation of an orbital
angular momentum. The presence of anisotropy, although not
responsible for the SOAM conversion process, can give rise to
more complex and exotic structures in the phase profile, as it
will be shown below.

To observe the SOAM conversion effect, we perform
transmission measurements using the cavity mode of an
InGaAs/GaAs microcavity, the same sample used in Ref. 26.
Note that although an excitonic resonance exists in the sample,
it has negligible effect on the cavity mode resonance since we

operate in the regime of very large positive detuning (≈ 6 meV
between the excitonic resonance and the cavity mode reso-
nance at k = 0). We excite in one circular polarization and we
detect both circular components of the transmitted signal. In
order to demonstrate the existence of vortex excitations, we
implement a homodyne detection scheme in the setup, which
allows us to retrieve the phase of the signal.27 The sample is
kept in a liquid helium flow cryostat at low temperature (≈4 K)
to ensure the transparency of the GaAs substrate and spacer
layer. Note that this constraint only depends on the sample
used, and the effect we observe should be reproducible even
at room temperature. The laser source used here is a tunable
single-mode continuous wave Ti:sapphire laser. The laser is
first split into two beams: one is used as the phase reference
for the homodyne detection, while the other is prepared in
the circular polarization state σ+ and is used to excite the
system. This Gaussian-shaped σ+ beam is tightly focused
onto the sample using a 0.5-NA microscope objective. The
tight spatial focusing results in a very broad, single-energy
excitation in momentum space. Consequently, increasing the
excitation energy with respect to the bottom of the cavity
mode, we are able to excite a ring with |k| �= 0 in reciprocal
space. This is a key feature that allows us to access a regime
where the k-dependent TE–TM splitting becomes significant.
Moreover, the ring-shaped filtering in k space, intrinsically
provided by the system, is such to generate a Bessel beam
intensity profile in the transmitted optical field. The real-space
transmitted field coming from the sample is collected with
another 0.5-NA objective. The two polarizations of opposite
circularity (σ+, σ−) are eventually separated and imaged on a
CCD camera using a Wollaston prism. On the same camera,
we superimpose the homodyne reference beam in order to
obtain interference patterns, from which we extract the phase
profiles.

For an excitation energy 2.5 meV above the bottom of the
cavity mode, the ring diameter in reciprocal space has a radius
of |k| ≈ 2μm−1 for which the TE–TM splitting is estimated
to be �(k) ≈ 20 μeV. The polarization-resolved transmitted
optical field is shown in Fig. 2(a) for σ+ and in Fig. 2(d) for
σ− polarizations. The transmitted σ+ beam is characterized
by a central high-intensity spot surrounded by a series of
rings. The opposite circularly polarized σ− signal shows a
much wider central spot, featuring two distinct local minima,
located at (x,y) ≈ (0.5, − 1) μm and (x,y) ≈ (0.5,1) μm.
These minima are attributed to optical vortices because of
the SOAM conversion process.

By interfering the transmitted signal with the reference
beam, two interferograms are obtained: one for the σ+ and
one for the σ− transmitted beams, shown in Figs. 2(b) and
2(e), respectively. Within the central spot of the σ− signal,
we unambiguously identify the presence of two forklike
dislocations, highlighted by the white circles in Fig. 2(e).
These dislocations coincide with the local density minima
of Fig. 2(d), proving the existence of quantized vortices.
Note that both interferograms [Figs. 2(b) and 2(e)] feature
other forklike dislocations, located at the outer edge of
the central spot. These dislocations result from the π phase
mismatch [see Fig. 2(c)] between the central region and the
first density ring and, in fact, do not correspond to optical
vortices.
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FIG. 2. Real-space profile (a) of the transmitted optical field, in-
terferogram (b), and corresponding phase (c) for the σ+ polarization.
Same for the σ− polarization in (d), (e), and (f), respectively. The
white (black) circles mark the position of the pair of optical vortices.

Using digital holography methods,28 we extract the phase
of the transmitted field for both σ+ and σ− polarizations as
shown in Figs. 2(c) and 2(f), respectively. The analysis of the
phase confirms that no topological charge is present in the σ+
transmitted signal [Fig. 2(c)]. Nevertheless, we observe the
aforementioned phase structure associated to the ring density
profile of Fig. 2(a): each ring is in antiphase with the one
before and after. This π phase shift is responsible for the
forklike dislocations that can be found at the locations (x,y) ≈
(−1.5,1) μm and (x,y) ≈ (1, −1) μm in the interferogram of
Fig. 2(b), which do not correspond to vortices (as they do not
coincide with any local density minima).

In the σ− transmitted signal, the vortex singularities exhibit
a linear phase increase as a function of the azimuthal angle,
thus confirming that we are in the presence of a pair of optical
vortices. The total phase jump along the σ− outer transmission
ring is found to be 4π , as in the theoretical prediction [see
Eq. (3)]. The two vortices present in the σ− transmission are the
signature of the L = +2 orbital angular momentum obtained
by the conversion of the spin, from σ+ (S = +1) to σ− (S =
−1) due to the TE–TM polarization splitting.

Theory predicts that the optical vortices resulting from
SOAM conversion are expected to spatially overlap in the
absence of anisotropy. When anisotropy is present, the pair of
vortices is spatially separated by a distance directly related to

the degree of anisotropy in the sample. In general, though, the
SOAM conversion is robust and generic on the sample surface.
The anisotropy being strongly position dependent allowed us
to find positions where the two vortices were closer or farther
apart from each other. Moreover, the orientation of the vortex
pair is set by the direction of the higher-energy birefringence
axis of the sample. The higher-energy polarization caused
by birefringence is at 70◦ clockwise with respect to the x

axis of Fig. 2. Therefore, for polaritons traveling in the 70◦
direction (or opposite 250◦ direction), the anisotropy has the
effect of splitting further TM and TE polarized states. This
enhancement of the TE–TM splitting causes more light to
couple from the σ+ to σ− polarization in the 70◦ or 250◦
direction. The central vortex pair appears as a minimum along
the direction of maximum intensity [see Fig. 2(d)], that is, they
appear along the birefringence axis.

Finally, to further verify that the observed singularities are
a product of the SOAM conversion, we performed the same
experiment exciting the parabolic dispersion resonant to k =
0 where the TE–TM splitting is �(0) = 0 μeV. We did not
encounter any phase singularities neither in the σ+ nor the
σ− transmitted signals, thus excluding the role of focusing in
the SOAM conversion in our experiment17,18 and verifying the
dependence of the effect on the TE–TM polarization splitting.

We are able to quantitatively reproduce the experimental
findings with the theoretical model introduced above.29 The
results of the simulations are shown in Fig. 3. The intensity
of the optical field is plotted together with the corresponding
calculated phase for the σ+ in Figs. 3(a) and 3(b) and for the
σ− polarization in Figs. 3(c) and 3(d), respectively. As it can

FIG. 3. (Color online) Real-space intensity profile of the intracav-
ity optical field and corresponding phase: (a), (b) for the σ+ and (c),
(d) for the σ− polarizations, respectively. Note: The density contour
lines of (a) and (c) are superposed to the corresponding phase in (b)
and (d) in order to underline that only two local density minima are
present in the σ− signal, and that they match with two phase windings
of 2π . The presence of anisotropy is responsible for the complex and
exotic phase structure.
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be seen in those figures, the theory captures all the features of
the experimental findings. In the model, the spatial separation
between the two vortices is caused by the ξ anisotropy term.

In this paper, we investigated the creation of beams
carrying orbital angular momentum, exploiting an optical
microcavity—a 2D optical isotropic and homogeneous ele-
ment. Our system represents a single compact optical device
capable of generation of beams with orbital angular mo-
mentum for applications in the control of nanomachines or
quantum information. Moreover, being a homogeneous and
isotropic optical system, the creation of arrays of elements
to generate OAM carrying beams is greatly simplified, not

requiring any special nanostructuring. We have demonstrated
the creation of a pair of optical vortices, forcing the σ−
beam to carry a total angular momentum of +2. This
observation proves SOAM conversion occurring between the
two orthogonal circular polarizations, which are coupled by
the TE–TM splitting featured by the microcavity sample.
With the theoretical model presented, we are able to fit
the experimental parameters and quantitatively match the
results.
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