Magnetic materials are usually divided into two classes: those with localised
magnetic moments, and those with itinerant charge carriers. We present a
comprehensive experimental (spectroscopic ellipsomerty) and theoretical study
to demonstrate that these two types of magnetism do not only coexist but
complement each other in the Kondo-lattice metal, Tb2PdSi3. In this material
the itinerant charge carriers interact with large localised magnetic moments of
Tb(4f) states, forming complex magnetic lattices at low temperatures, which we
associate with self-organisation of magnetic clusters. The formation of
magnetic clusters results in low-energy optical spectral weight shifts, which
correspond to opening of the pseudogap in the conduction band of the itinerant
charge carriers and development of the low- and high-spin intersite electronic
transitions. This phenomenon, driven by self-trapping of electrons by magnetic
fluctuations, could be common in correlated metals, including besides
Kondo-lattice metals, Fe-based and cuprate superconductors.Comment: 30 pages, 6 Figure