378 research outputs found

    Improved Transfer-Matrix Schemes of Phenomenological Renormalization

    Get PDF
    Different phenomenological RG transformations based on scaling relations for the derivatives of the inverse correlation length and singular part of the free-energy density are considered. These transformations are tested on the 2D square Ising and Potts models as well as on the 3D simple-cubic Ising model. Variants of RG equations yielding more accurate results than Nightingale's RG scheme are obtained. In the 2D case the finite-size equations which give the {\it exact} values of the critical point or the critical exponent are found.Comment: LATTICE99(spin), 3 pages, no figures; to be published in Nucl. Phys. B (Proc. Suppl.

    Sodium dependent inositol transport in HL60 cells is not related to Na+/K+, ATPase activity

    Get PDF
    AbstractIn HL60 cells, inositol transport is sodium-dependent but functionally independent of Na+/K+ ATPase activity. This observation has implications for the currently proposed theory for the development of diabetic complications

    Genome-wide analysis of diamondback moth, Plutella xylostella L., from Brassica crops and wild host plants reveals no genetic structure in Australia

    Get PDF
    Molecular studies of population structure can reveal insight into the movement patterns of mobile insect pests in agricultural landscapes. The diamondback moth, Plutella xylostella L., a destructive pest of Brassica vegetable and oilseed crops worldwide, seasonally colonizes winter canola crops in southern Australia from alternative host plant sources. To investigate movement, we collected 59 P. xylostella populations from canola crops, Brassica vegetable and forage crops and brassicaceous wild host plants throughout southern Australia in 2014 and 2015 and genotyped 833 individuals using RAD-seq for genome-wide analysis. Despite a geographic sampling scale > 3,000 km and a statistically powerful set of 1,032 SNP markers, there was no genetic differentiation among P. xylostella populations irrespective of geographic location, host plant or sampling year, and no evidence for isolation-by-distance. Hierarchical STRUCTURE analysis at K = 2–5 showed nearly uniform ancestry in both years. Cluster analysis showed divergence of a small number of individuals at several locations, possibly reflecting an artefact of sampling related individuals. It is likely that genetic homogeneity within Australian P. xylostella largely reflects the recent colonization history of this species but is maintained through some level of present gene flow. Use of genome-wide neutral markers was uninformative for revealing the seasonal movements of P. xylostella within Australia, but may provide more insight in other global regions where the species has higher genetic diversity.Kym D. Perry, Michael A. Keller and Simon W. Baxte

    Amphibole: A major carrier of helium isotopes in crustal rocks

    Get PDF
    The first evidence for a specific role of amphiboles in He isotope balance of crustal rocks was presented in early contributions by Gerling et al. (1971, 1976). Since then it was shown that 4He and 3He concentrations in amphiboles generally exceed those in the host rock samples. Recently amphibole was considered as an important carrier of noble gases and other volatiles components in the course of their subduction into the mantle. This paper presents new data on the balance and mobility of noble gas isotopes and major gas constituents in amphibole separates in order to understand sources and evolution of volatile components of 2666 Ma old alkaline granites from Ponoy massif (Kola Peninsula), which underwent metamorphism 1802 Ma ago.In the amphiboles 3He, 4He and 40Ar* were dominantly produced in situ due to radioactive decay of the parent isotopes and associated nuclear reactions. A small fraction of He (≈ 3% of the total) is liberated by crushing and shows 3He/4He ratio indistinguishable from that found by total extraction. The fraction of trapped 40Ar* amounts to ≈ 40%; both these fractions presumably occupy fluid inclusions and show rather low 4He/40Ar* ≈ 0.1, a factor of ≈ 150 below the production ratio (calculated assuming no loss / gain of the species has happened since the time of metamorphism).3He has been better preserved in amphiboles compared with 4He: the retention parameter (measured amount of He / totally produced amount) for 3He (≈ 0.4) exceeds that for 4He (≈ 0.15).He extraction by fast and slow linear heating of amphiboles resulted in different release patterns. The fast heating (within 12 to 40 °C min− 1) revealed a superposition of two peaks. When heating with slower heating rate (below 8 °C min− 1) was applied, the high-temperature peak disappeared (the “disappearing site”). Extractions of He atoms from grain and powder samples at different heating rates have shown that: (1) the “disappearing site” is revealed by the fast heating analyses of different amphibole samples but not only those from the Ponoy massif; (2) amount of He liberated from the “disappearing site” is variable and generally much less than the total amount of He in the sample; (3) analysis of the powder produced in the crushing experiments never reveals the “disappearing site”; the temperature of He release from the powder is lower than that from the mm grain size sample by ≈ 50 °C. Possible explanations of the nature of the “disappearing site” are discussed. However, independently on nature of this effect, repeated gas extractions by heating at different rates would give additional information about structure and its transformation during heating of amphiboles.The simplest explanation of the observed abundances of noble gas isotopes in the amphibole separates from Ponoy granites suggests local production, redistribution and partial loss of noble gases during evolution of the massif

    Heterogeneous and Homogeneous Parallel Architectures for Real-Time Adaptive Active Vibration Control

    Get PDF
    This paper presents an investigation into parallel processing techniques for real-time adaptive control of a flexible beam structure. Three different algorithms, namely simulation, control and identification are involved in the adaptive control algorithm. These are implemented on a number of computing platforms including a homogeneous network of transputer nodes, a homogeneous network of digital signal processing (DSP) devices, heterogeneous architectures involving transputers, reduced instruction set computer superscalar processor and DSP device, single DSP devices and transputer nodes and several general purpose sequential processors. The partitioning and mapping of the algorithms on the homogeneous and heterogeneous architectures is also explored. The inter-processor communication speed is investigated to establish the real-time performance aspects of the processors on the basis of the nature of the algorithms involved. A close investigation into the performance of several compilers is made and discussed within the context of real-time implementations. Finally, a comparison of the results of the implementations is made, on the basis of real-time communications performance, computation performance and complier performance, to lead to merits of design of parallel systems incorporating fast processing techniques for real-time control applications

    Interaction of Reggeized Gluons in the Baxter-Sklyanin Representation

    Full text link
    We investigate the Baxter equation for the Heisenberg spin model corresponding to a generalized BFKL equation describing composite states of n Reggeized gluons in the multi-color limit of QCD. The Sklyanin approach is used to find an unitary transformation from the impact parameter representation to the representation in which the wave function factorizes as a product of Baxter functions and a pseudo-vacuum state. We show that the solution of the Baxter equation is a meromorphic function with poles (lambda - i r)^{-(n-1)} (r= 0, 1,...) and that the intercept for the composite Reggeon states is expressed through the behavior of the Baxter function around the pole at lambda = i . The absence of pole singularities in the two complex dimensional lambda-plane for the bilinear combination of holomorphic and anti-holomorphic Baxter functions leads to the quantization of the integrals of motion because the holomorphic energy should be the same for all independent Baxter functions.Comment: LaTex, 48 pages, 1 .ps figure, to appear in Phys. Rev.

    Quantum and Classical Integrable Systems

    Full text link
    The key concept discussed in these lectures is the relation between the Hamiltonians of a quantum integrable system and the Casimir elements in the underlying hidden symmetry algebra. (In typical applications the latter is either the universal enveloping algebra of an affine Lie algebra, or its q-deformation.) A similar relation also holds in the classical case. We discuss different guises of this very important relation and its implication for the description of the spectrum and the eigenfunctions of the quantum system. Parallels between the classical and the quantum cases are thoroughly discussed.Comment: 59 pages, LaTeX2.09 with AMS symbols. Lectures at the CIMPA Winter School on Nonlinear Systems, Pondicherry, January 199

    5-ht inhibition of rat insulin 2 promoter cre recombinase transgene and proopiomelanocortin neuron excitability in the mouse arcuate nucleus

    Get PDF
    A number of anti-obesity agents have been developed that enhance hypothalamic 5-HT transmission. Various studies have demonstrated that arcuate neurons, which express proopiomelanocortin peptides (POMC neurons), and neuropeptide Y with agouti-related protein (NPY/AgRP) neurons, are components of the hypothalamic circuits responsible for energy homeostasis. An additional arcuate neuron population, rat insulin 2 promoter Cre recombinase transgene (RIPCre) neurons, has recently been implicated in hypothalamic melanocortin circuits involved in energy balance. It is currently unclear how 5-HT modifies neuron excitability in these local arcuate neuronal circuits. We show that 5-HT alters the excitability of the majority of mouse arcuate RIPCre neurons, by either hyperpolarization and inhibition or depolarization and excitation. RIPCre neurons sensitive to 5-HT, predominantly exhibit hyperpolarization and pharmacological studies indicate that inhibition of neuronal firing is likely to be through 5-HT1F receptors increasing current through a voltage-dependent potassium conductance. Indeed, 5-HT1F receptor immunoreactivity co-localizes with RIPCre green fluorescent protein expression. A minority population of POMC neurons also respond to 5-HT by hyperpolarization, and this appears to be mediated by the same receptor-channel mechanism. As neither POMC nor RIPCre neuronal populations display a common electrical response to 5-HT, this may indicate that sub-divisions of POMC and RIPCre neurons exist, perhaps serving different outputs

    Adsorption of Reactive Particles on a Random Catalytic Chain: An Exact Solution

    Full text link
    We study equilibrium properties of a catalytically-activated annihilation A+A→0A + A \to 0 reaction taking place on a one-dimensional chain of length NN (N→∞N \to \infty) in which some segments (placed at random, with mean concentration pp) possess special, catalytic properties. Annihilation reaction takes place, as soon as any two AA particles land onto two vacant sites at the extremities of the catalytic segment, or when any AA particle lands onto a vacant site on a catalytic segment while the site at the other extremity of this segment is already occupied by another AA particle. Non-catalytic segments are inert with respect to reaction and here two adsorbed AA particles harmlessly coexist. For both "annealed" and "quenched" disorder in placement of the catalytic segments, we calculate exactly the disorder-average pressure per site. Explicit asymptotic formulae for the particle mean density and the compressibility are also presented.Comment: AMSTeX, 27 pages + 4 figure
    • 

    corecore