1,244 research outputs found

    Ac transport studies in polymers by a resistor network and transfer matrix approaches: application to polyaniline

    Full text link
    A statistical model of resistor network is proposed to describe a polymer structure and to simulate the real and imaginary components of its ac resistivity. It takes into account the polydispersiveness of the material as well as intrachain and interchain charge transport processes. By the application of a transfer matrix technique, it reproduces ac resistivity measurements carried out with polyaniline films in different doping degrees and at different temperatures. Our results indicate that interchain processes govern the resistivity behavior in the low frequency region while, for higher frequencies, intrachain mechanisms are dominant.Comment: LaTeX file, 15 pages, 5 ps figures, to appear in Phys. Rev.

    Effect of heterogeneity on the elastic properties of auxetic materials

    Get PDF
    Copyright © 2003 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Journal of Applied Physics 94 (2003) and may be found at http://link.aip.org/link/?jap/94/6143Auxetic materials are gaining practical interest for their unusual and sometimes extreme mechanical response. The process of modeling these materials so far has highlighted a number of microstructural properties that are key to these materials. However these models often rely on the assumption of homogeneity and order within the materials. Practically, a homogeneous auxetic material such as foam is unlikely to be manufactured. This work seeks to analyze the effect of fluctuations within the microstructure of the material. Numerical results show the effect of fluctuations in an auxetic granular substance and analytical work indicates the relation between microscale fluctuations and the elastic moduli for a general auxetic material

    Light Curves of the Neutron Star Merger GW170817/SSS17a: Implications for R-Process Nucleosynthesis

    Get PDF
    On 2017 August 17, gravitational waves were detected from a binary neutron star merger, GW170817, along with a coincident short gamma-ray burst, GRB170817A. An optical transient source, Swope Supernova Survey 17a (SSS17a), was subsequently identified as the counterpart of this event. We present ultraviolet, optical and infrared light curves of SSS17a extending from 10.9 hours to 18 days post-merger. We constrain the radioactively-powered transient resulting from the ejection of neutron-rich material. The fast rise of the light curves, subsequent decay, and rapid color evolution are consistent with multiple ejecta components of differing lanthanide abundance. The late-time light curve indicates that SSS17a produced at least ~0.05 solar masses of heavy elements, demonstrating that neutron star mergers play a role in r-process nucleosynthesis in the Universe.Comment: Accepted to Scienc

    A Nonzero Gap Two-Dimensional Carbon Allotrope from Porous Graphene

    Full text link
    Graphene is considered one of the most promising materials for future electronic. However, in its pristine form graphene is a gapless material, which imposes limitations to its use in some electronic applications. In order to solve this problem many approaches have been tried, such as, physical and chemical functionalizations. These processes compromise some of the desirable graphene properties. In this work, based on ab initio quantum molecular dynamics, we showed that a two-dimensional carbon allotrope, named biphenylene carbon (BPC) can be obtained from selective dehydrogenation of porous graphene. BPC presents a nonzero bandgap and well-delocalized frontier orbitals. Synthetic routes to BPC are also addressed.Comment: Published on J. Phys. Chem. C, 2012, 116 (23), pp 12810-1281

    Early Spectra of the Gravitational Wave Source GW170817: Evolution of a Neutron Star Merger

    Get PDF
    On 2017 August 17, Swope Supernova Survey 2017a (SSS17a) was discovered as the optical counterpart of the binary neutron star gravitational wave event GW170817. We report time-series spectroscopy of SSS17a from 11.75 hours until 8.5 days after merger. Over the first hour of observations the ejecta rapidly expanded and cooled. Applying blackbody fits to the spectra, we measure the photosphere cooling from 11,000900+340011,000^{+3400}_{-900} K to 9300300+3009300^{+300}_{-300} K, and determine a photospheric velocity of roughly 30% of the speed of light. The spectra of SSS17a begin displaying broad features after 1.46 days, and evolve qualitatively over each subsequent day, with distinct blue (early-time) and red (late-time) components. The late-time component is consistent with theoretical models of r-process-enriched neutron star ejecta, whereas the blue component requires high velocity, lanthanide-free material.Comment: 33 pages, 5 figures, 2 tables, Accepted to Scienc

    Fermi Large Area Telescope Observations of the Cosmic-Ray Induced gamma-ray Emission of the Earth's Atmosphere

    Full text link
    We report on measurements of the cosmic-ray induced gamma-ray emission of Earth's atmosphere by the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope. The LAT has observed the Earth during its commissioning phase and with a dedicated Earth-limb following observation in September 2008. These measurements yielded 6.4 x 10^6 photons with energies >100MeV and ~250hours total livetime for the highest quality data selection. This allows the study of the spatial and spectral distributions of these photons with unprecedented detail. The spectrum of the emission - often referred to as Earth albedo gamma-ray emission - has a power-law shape up to 500 GeV with spectral index Gamma = 2.79+-0.06.Comment: Accepted for publication in PR

    Fermi Large Area Telescope Measurements of the Diffuse Gamma-Ray Emission at Intermediate Galactic Latitudes

    Full text link
    The diffuse Galactic gamma-ray emission is produced by cosmic rays (CRs) interacting with the interstellar gas and radiation field. Measurements by the Energetic Gamma-Ray Experiment Telescope (EGRET) instrument on the Compton Gamma-Ray Observatory indicated excess gamma-ray emission > 1 GeV relative to diffuse Galactic gamma-ray emission models consistent with directly measured CR spectra (the so-called ``EGRET GeV excess''). The excess emission was observed in all directions on the sky, and a variety of explanations have been proposed, including beyond-the-Standard-Model scenarios like annihilating or decaying dark matter. The Large Area Telescope (LAT) instrument on the Fermi Gamma-ray Space Telescope has measured the diffuse gamma-ray emission with improved sensitivity and resolution compared to EGRET. We report on LAT measurements of the diffuse gamma-ray emission for energies 100 MeV to 10 GeV and Galactic latitudes 10 deg. <= |b| <= 20 deg. The LAT spectrum for this region of the sky is well reproduced by a diffuse Galactic gamma-ray emission model that is consistent with local CR spectra and inconsistent with the EGRET GeV excess.Comment: 2 figures, 1 table, accepted by Physical Review Letters, available online Dec. 18th, 200

    Detection of 16 Gamma-Ray Pulsars Through Blind Frequency Searches Using the Fermi LAT

    Full text link
    Pulsars are rapidly-rotating, highly-magnetized neutron stars emitting radiation across the electromagnetic spectrum. Although there are more than 1800 known radio pulsars, until recently, only seven were observed to pulse in gamma rays and these were all discovered at other wavelengths. The Fermi Large Area Telescope makes it possible to pinpoint neutron stars through their gamma-ray pulsations. We report the detection of 16 gamma-ray pulsars in blind frequency searches using the LAT. Most of these pulsars are coincident with previously unidentified gamma-ray sources, and many are associated with supernova remnants. Direct detection of gamma-ray pulsars enables studies of emission mechanisms, population statistics and the energetics of pulsar wind nebulae and supernova remnants.Comment: Corresponding authors: Michael Dormody, Paul S. Ray, Pablo M. Saz Parkinson, Marcus Ziegle
    corecore