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Effect of heterogeneity on the elastic properties of auxetic materials
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Auxetic materials are gaining practical interest for their unusual and sometimes extreme mechanical
response. The process of modeling these materials so far has highlighted a number of
microstructural properties that are key to these materials. However these models often rely on the
assumption of homogeneity and order within the materials. Practically, a homogeneous auxetic
material such as foam is unlikely to be manufactured. This work seeks to analyze the effect of
fluctuations within the microstructure of the material. Numerical results show the effect of
fluctuations in an auxetic granular substance and analytical work indicates the relation between
microscale fluctuations and the elastic moduli for a general auxetic materiaROG8 American
Institute of Physics.[DOI: 10.1063/1.1614847

I. INTRODUCTION behavior. An(incompletg list follows: polymeric foam$,

. . . . . . _ expanded polytetrafluoroethylefiegubic elemental solids,
Auxetic materials, that is materials with a negative Pois- ;.o gases, many hypothetical carbon structures,

son’s_b_rlgti(l), have long _beenf rec%gnized _als a ftheocrje'_[icact-crystobalite, zeolites and other crystal systémeeyed
possibility- A recent review of such materials is found in o stryctureg ultrahigh molecular weight polyethylerie:
Evans and Aldersofi.Using isotropic elasticity, the con- polypropolyene (PP:1% auxetic granular materiald:
straint of stability on strain energy gives the following limits crumpled paper/entrc;pic materials: membratfeskin:3 and,

to the Poisson’s ratio tethered network&

In wo dimension Qualitatively, the constitutive properties and microstruc-
—1l<wp<1, (1) ture vary greatly between auxetic materials. Some, such as
the a-crystobalite or zeolites have a tightly constrained regu-
lar geometric arrangement that is required for the auxetic
—1l<v<i. (2)  property. Materials such as polymeric foams or polypropyl-
ene have an array of constitutive elements whose properties
vary randomly through the material. Length scales too can
vary from the nanometer for molecular auxetics to the order
of a meter for keyed-brick structur@sThis variability in

in three dimension

The ratio between the bulk modulaesand shear modulyg,
can also be expressed in terms of the Poisson’s ratio
In two dimension

u 1l-v auxetic materials makes theoretical modeling a complex
x 1+’ 3 task. Practically it leads to specific models for each type of
material. It is unlikely and unnecessary that a single micro-

in three dimension structural model can cover the full range of materials how-
w 3(1-2v) ever it is reasonable to investigate some general properties

(4) that will reflect on a broad range of auxetic materials.
Classical linear elasticity predicts that auxetic materials

The limits in Eqg.(1) have a physical interpretation based onhave advantages over conventional materials. Hertz indenta-
Eqg. (3). The negative limit indicates a material that cannottion theory predicts the radius of indentation to be propor-
change shape, the positive limit indicating a material thational to (1— »?)* for a hard ball indentef A conventional
cannot change volume. Where anisotropy can occur the Poifeam has a Poisson’s ratio of about 0.3 but auxetic foams
son’s ratio has to be qualified to identify the axis and is therhave achievedv=—0.76. Hence the auxetic material ap-
not bound by these limit&:> For example, granular media proaches the limit of zero radius of indentation. The large
display »>1 under deviatoric loading; a phenomenon knownratio of shear modulus to bulk modulus in E4) is another
as dilation that has only recently be adequately modeledmechanical property that has already been utilized in the de-
Conversely, some auxetic materials can produce a Poissorgign of MAGNOX reactors. In this case the material has a
ratio as large as-12. large resistance to earthquake sho¢sear loadingbut a

In 1987, Lake¥ fabricated a polymeric foam that exhib- low resistance to thermal expansigbulk loading. With
ited a negative auxetic behavior. There are many other mahese advantages in mind there are many possible uses for
terials (real and hypotheticalthat can also exhibit auxetic materials with negative Poisson’s ratio. A problem that has
so far resisted large-scale manufacturing is the current inabil-
3Author to whom correspondence should be addressed; electronic mailly {0 Make quantities of auxetic materials with consistent
n.gaspar@physics.org properties at viable costs in a high volume manufacturing

k  1+v
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scenario. If this can be overcome then potential applicationrom these equations auxetic behavior is seen to occur for
range from snap fasteners to orthopedic cushioning ang>1
ballistics® 3D material:

Materials in the real world inevitably have imperfections

or random variations in material properties. Part of the prob- = 5 (5)
lem of manufacture is knowing how much these variations 4+é

must be avoided or reduced to manufacture materials withp material:

predictable large scale properties. The majority of the mod-

eling work to date utilizes a unit cell for the microscale for . 1-¢ 6)

the model and assumes that the bulk material is a homoge- . 3+¢°

neous tesellating collection of these cells. This article ad;

dresses the difference between a homogeneous model ar]ANahHe this model of a strict granular material is hypothetical

fluctuating or heterogeneous material by employing a hoSince naturally occurring granular materials do not possess

= . this interaction, the theoretical concept can be applied to
mogenization technique that has been successfully used | . .
. . . other materials. For instance, molecular structures can have a
granular mechanics.Numerical results are obtained that

show the difference between a homogeneous material andlarger resistance to tangential than normal displacements.

heterogeneous one. Then an analytic expression is produceé:"?yond that application of “unusual grains” is a more gen-

that relates the correction for heterogeneity to the level O]eral qppllgatlon. What actually is modeled is a random array
. "y : of points interacting through noncentral forces. Other mate-
fluctuations within the material.

rials that can be described in this way are foams. Rothenburg
et al. give a good account of how their random network
model describes auxetic behavior in foams. They suggest
II. FOAM AND GRANULAR MODELS that the buckled beams that are observed in auxetic foams
have a weakened normal stiffness due to the buckle. Taking
Conventional models for a two dimension@D) foam  this further, results will be drawn from granular mechanics to

center around a hexagonal cell shape. For topologicadhed light on auxetic materials in particular auxetic foams.
stability!® a 2D network should contain on average three

contacts per node or six sides per cell, hence a hexagonal cell

structure is well founded. To convert a physical foam sample

from conventional to auxetic behavior it is compressed andll- MEAN-FIELD APPROXIMATIONS

heated in a prescribed manner. This process makes signifi- |, 5 continuous material with stress and straine, con-
cant changes to the microstructure that bring about the g teq by an elastic stiffneds or complianceC=2"" (the

change in elast_ic propertiéé.Existing m_odels of auxetic ;. erse of a fourth ordered tensor is defined @S;bt:dlcdef

foam reflect this process by considering an altered cell 6,.8,7) and with position variable, the static equilibrium
model. Masters and Evalsuse a re-entrant cell or hour- can be expressed as a zero divergence of S[ESS. (7)—

. . 18 .
glass shape while Smitet al.™ consider a regular network (g)] This is arrived at by considering the force balance on a
that has certain connections broken. small unit volume

In both cases elastic properties are ascribed to the unit
cell. This is calculated from assumed elastic properties of the ~ d07a,
ribs that make up the cells, along with the geometry of the a_xb_ ' @)
cell and the symmetries that makes the cell tessalate. In both
models mentioned above there are parameters that help aar
just the model to match experimental results. Masters and 97, . .e.q
Evans’ identify a re-entrant cell structure that is nearly iso- o
tropic while Smithet all® are able to model the strain de- b
pendent behavior. Both models demonstrate some importa®f
microstructural considerations in the mechanics of conven-
tional and auxetic foams but leave an important question 9
unanswered. Is the microstructure of the foam successfully

being modeled to reproduce the macroscopic effects or ang the case of a homogeneous material the variablsd Z
the models simply presenting a possible homogeneous mjre a constant function of position and Eqs.(7)—(9) are

crostructure that has the same properties as a large sampletfially satisfied. For a heterogeneous material in equilib-
real foam? The difference matters when the model is askeflum the strain and elastic moduli become functions of posi-

0, 8

a( C);blcdecd -0

X

to predict behavior beyond known data. tion x: e(x) andZ(x). The local constitutive properties are
Another model of an auxetic material is that of a granu-
lar medium™® For this medium to be auxetic the tangential ~ @ab(X) = Zapcd X) €cq(X).- (10

interaction between grains has to be larger than the normathe aim is then to fin@®" such that Eq(11) is satisfied. The
interaction. Ika andkT are the normal and tangential elastic over-bar indicates a volume average

interactions between grains age- k1 /ky is the interaction of —
ratio, then the Poisson’s ratio is given by E¢5) and (6). Tab=Zabcd€cd - (11)
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How z°®"is arrived at from the field oZ(x) is the process of Tan=Zabed X) €cq(X) (183
homogenization. The simplest methods are to calculate the
arithmetic average =Zapcd€cat Zapca€edt Zabed€ +ZapcdT €ca (18D
1 —_ _ S —
Zeffl:vf Z(X) (12) = Zabcd€cd Zapcd€ed- (180

The last two terms in Eq(18b) contain the product of an
average and a fluctuator. By definition the average of these
1 quantities is zero. Kneer’! has produced a solution to this
(Zeﬁz)_lzvj (Z(x)~*. (13 problem for a disordered composite. Ker’s solution re-
i ~quires equilibrium at the local scale so inherently corrects the
These two provide upper and lower bounds, effectivelygrrors introduced by the mean strain approach. The approach
known as the mean strain and mean stress estimates singgjyes at a series solutidiEg. (19)] of increasing correla-
they are arrived at by assuming the strenstresgthrough-  tions of the local fluctuations of the stiffness. It should be
out the material is equal to the mean of that quantity. Alter-yoteq that products of fourth-ordered tensor are of the double
native titles are the Voigt and Reuss estimates, respectivel¥cgiar kind: AB= AspedBeger. These correlations are
A consequence of these mean-field approximations is th%eighted by a mean tens® whose nonzero components
Eq. (10) is not satisfied. In the case of a mean-strain approXishown in Eq.(20) are factors of the mean L anoenstants.

mation equilibrium at a local scale is rejected, while in the_ 4 . This of course requires that the material is macro-
case of a mean-stress approximation, the strain field is n%tcopically isotropic

uniquely defined.
Fortes and Ashi# find Reuss and Voigt limits for a 2D Z'€"=—Z"RZ"+Z"RZ*RZ"
cellular material. Using a honeycomb model with cell wall

or the harmonic average

bending only the local Young’'s modulls; is given by —Z'RZ'RZ'RZ" +..., (19)
4Eg (t0)3 A+5u
=—|—], 14 Ri111=Rozoorm ——=—F7—,
v (3)\lo (14) Su(N+2u)
wheret, andl, are thickness and length respectively of cell —(f+ M)
walls andEg is the Young’s modulus of the material that ~ Ri12=Roa1=—=——=, (20)
: Bu(N+2u)
makes up the cell walls. Mean stress and mean strain tech- -
nigues are applied to obtain the following limits. R R A +3u
1212~ M1221— R2112— M2121—= o— 7 ~—
EreussEu=<Ewigt, (15 Bu(N+2u)
mean stress estimate: The series solution is good for small fluctuations and ap-
E 5 proaches a limit for a perfectly disordered material. Perfect
ReUSS - 1— Z 82(1)—26%(1), (16)  disorder implies that the domain over which the local stiff-
Ey 2 ness is defined is infinitely small when compared to the ex-
mean strain estimate: tent of the macroscale. In practice only the first term is re-
quired for a good correction to the mean strain value. In any
Evoigt 2 2 case higher terms are difficult to calculate since more infor-
——=1+ (1) + 5(1), a7 9 fcu u ! !
Eu mation is required about the statistical makeup of the mate-
whered(x) is the half width of the distribution of a statistical rial in question. In t‘(VO dimensions the isotropic elastic stiff-
variablex normalized on the average It is difficult to uti- ~ N€ss has the following nonzero elements:

lize these results as only the Young’s modulus is calculated Zi=
and then only for a conventional hexagonal cell that in gen-
eral does not exhibit auxetic behavior that this work is inter-  Z1125=Z5511=NA\, (21
ested in. What is significant that Fortes and Ashby highlight
is that the spread in the Young's modulus varies with square 21217~ £1221= 22117~ 22121~ M-
of the local fluctuations as measured &§). Assuming that this holds at the short lengthscale as well as
the macroscale the correlati@’ Z™* in the first term of Eq.
(19 will contain the terms of the fluctuations of the Lame
IV. HOMOGENIZATION constants(A *)?%, (u*)? and\ " u*. It must be emphasized
that these results apply to any material that has local fluctua-
Position dependent variables can be separated into votions and the ability to define a continuous stiffness at a
ume averaged and fluctuation quantities. The latter are sigength scale that is significantly smaller than the macroscale.
naled by a superscript+’ thus: A(x)=A+A". Strictly  This technique has been successfully implemented by Gaspar
speaking the fluctuation quantity should be written as a funcand Koender€ where a significant advance is made in the
tion of positionx, A™(x). For convenience this will be as- prediction of the shear modulus of granular assemblies. To
sumed. Applying the separation to H40) gives find the values ofZ and of the correlationZ “Z*, data are

o= N+2u,
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FIG. 1. Poisson ratio as a function of microscale interaction ratio. Bathurst

and Rothenburg’s modéolid); mean strain calculatioft-); heterogeneous ~ FIG. 3. Bulk modulus as a function of microscale interaction ratio. Bathurst

calculation(x). and Rothenburg’s modé$olid); mean strain calculatio-); heterogeneous
calculation(X).

taken from a 2D simulation of a densely packed granular
assembly by KuhA®~2° The particle positions and interac- . . .
tions were taken from Kuhn'’s simulation and used to calcu- In .aII three figures the mean—strqln (.:alculatlon. agrees
late the local continuum stiffness via a novel techni¢fir€. well with Bathurst and Rothenburg which is unsurprising as

This technique fits polynomials to the spin and displacemengoenders and Jenkins technique is very similar to that of

of a small assembly of particles and the fitting criteria are athurst ?an.ROIhlenc?#rg' HovAvevera'the heéergogendeoGus val-
sasedon the equilrim equatons. y sssocaing he e 2 SNTEAY Serent sceordng 0 68 snel0
displacement gradient with a strain, and calculating a stress

from a volume density of forces, a relationship is obtainearatlo ¢ will approach an asymptote of(=)——1. The het-

; erogeneous calculation similarly has an asymptote but is
between the stress and strain of a small assembly of thé . :
material. From the field oZ (x) the correlationZ*Z" can much reduced a(>)——0.2. This shows that as with con-
| . - . ) ventional granular media, considerations of the heterogeneity
be found and Krner’'s homogenization technique applied.

. . . . of the material are important to for understanding the elastic
The process is carried out here, but the simulation data ! . . :
. . . . . response of a material with localized disorder. The shear

are treated as an auxetic material by altering the interaction . ; :
modulus although predicted to increase linearly wjthoy

between grains to induce auxetic behavior predicted b . . : o
. ) ean strain assumptions, increases initially but ceases to
Bathurst and Rothenbufg A mean-strain modulus is calcu- : . -
yary much with¢ for large values of. An important impli-

lated that can be compared to the Bathurst and Rothenburgs .’ . . . .
T . cation is that the large-scale elastic moduli are constrained
prediction in Eq.(6). A heterogeneous modulus is also cal-

: ) o : by their fluctuations through the material. For example, in
culated by adding the first term of Kner's expansiofEdg. .this case, the shear modulus cannot be raised above a limit

I(leg)s] tlo ;hear:réegn-stram value. These results are shown I%y incrgasingg indefipitely. Thg limit is determined by the

T ' fluctuations of elastic moduli. The bulk modulus whose
mean strain prediction is a constant, where fluctuations do
occur within the material, becomes a function of the micro-

6- structure.
5]
% 4] V. ANALYTICAL APPROACH IN 2D
=
o
,25 3 A two-dimensional specialization of Kners method to
b calculateZ " e" shown in Gaspaf produces slightly more
27 transparent results. Equatiof®2)—(24) show the calculation
of the principal moduli with the mean-strain and heteroge-
11 :
wx X X X neous correction clearly separated
0 : R M . — _ (MHZ2+2(0tu)
0 2 4 6 & 10 12 14 16 Z1111=Zooo=N+2u— —
Interaction Ratio N 2u
FIG. 2. Shear modulus as a function of microscale interaction ratio. Bathurst (M+)2(;+ 5u)
and Rothenburg’s modésolid); mean strain calculatioft); heterogeneous - (22)
calculation(). 2u(N+2u)
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s a1 (ND)Z+2(0 ™)
11207 Z2211= T
(n")2(N+5u) 23
2u(N+2p)
— (WH)’(\+5w)
Ziy17= 2= 2= Zonim w— ——————- (24

20\ +250)
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(N2~ ()2 —(NT ™). (29)

The similarity between the two autocorrelates in E29)
indicates a value of to be about unity, which supports the
calculated value oA=0.6. The constant of proportionality

in Eq. (29 is bound between zero X and u are completely
independent and one ¥ and u are perfectly correlated and

of equal mean. The reality, as already has been argued, will
be a modest correlation and so a calculated valueB of

The fluctuations of the material are captured in the correla= — 0-3 i quite reasonable. Considering these arguments, the

tions of the Lameconstants{\ "), (x")% and\ " u*. In-

calculated values of and B can be considered representa-

formation on these quantities is then required to understantive of this class of materials.

the effect of disorder within the material. These can be nor-

malized byu and(u*)?.

. . J_ ok A+2B  x+5

11115 2222—M_)(+ +K| — 2 - 2x+2)) |
(25

T A+2B  x+5 06

1122~ 2211—M_X+ - X+2 +2(;+2) . (20)

x+3
Z1o17= Zo121= Z1201=Zo11= 4| 1—K 26052 |’ (27)
where
(AF)? Nt (u*)? N
A=— . B= k= y=—
(u*)? (u")? w? 5

(28)

A typical auxetic foam sample hasie= —0.5. From isotro-
pic elasticity this givesy=—2/3. Values forA and B are

difficult to arrive at. These are dependent on the microstruc-  ,cor
ture of the material and have the potential to vary greatly.
However in 2D random networks like granular materials and

Taking this further it can be seen that terms containing
A+2B will then become small and the corrections will be
mainly dependent on the fluctuations in shear modulus. Since
the auxetic response can be considered a feature of a material
with a relatively large shear modulus it is not surprising that
fluctuations in the shear modulus will have a dominant effect
on the grand assembly moduli. If this is the case that terms in
A+ 2B become small for a general auxetic material, then this
approach is well founded for general auxetic materials.

Using these assumptions the variance of the shear modu-
lus, (1 ™)?, is then a measure of the fluctuations within the
material. Some simple analysis can then take place on the
variation of the heterogeneous moduli with changes in the
level of disorder as quantified by Using these values the
relative correction to the elastic moduli can be calculated as
a function of the level of disorddt in the material. All the
isotropic moduli can be obtained from E@25)—(27) via the
standard relations.

The relative corrections to the elastic moduli as obtained
from Eqgs.(22)—(24) are
Poisson’s ratio:

—2(—2A—4B+ x?+6x+5)k

honeycombs, the constraint of topological stability would re-

quire a fluctuation in one elastic modulus to influence the

other. This would imply a correlation betweanand x and

little change inA andB from one material of this type to the
next. The values can be calculated by any technique that
gives the position dependent elastic modulus for a material

sample. Using the granular simulation mentioned in Sec. V

with the technique by Koenders and Jenkih$’ values ofA
andB are calculated to beéd=0.6 andB= —0.3. In support

of treating these as constants it should be noted that an iso-

tropic elastic material that has——1 will have N/u——1.

So assuming that the fluctuations of a variable are roughly K
proportional to the mean, for a region of fixed Poisson’s

ratio, we can say

E"  —(—3kA—6kB—3k+x*+5x*—kx—kAx—2kBy+2A+4B+7x+5)k

E (x+1)(2x%+8y+8—2kA—4kB—ky—5k)

T (= 247848+ 2KATAKBL Kyt 5K
Lames:

AT k(—2A—4B+x+5)
N 2+ 3
shear modulus:

pot o k(x+3)

w 2(x+2)’ (32
Young’s modulus:

: (33
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0 rection the the Poisson’s ratio is roughly linear with zero
] (a) intercept and a gradient 6f0.25. So a suitable approxima-
'°-5§ o) " tion is
g -1] v=v(1-1.65%). (36)
£ 15f The equivalent for the Lameonstant\ is
O -1.57 _
= A=N\(1-2.5K). (37
& 2 \ The other principal elastic moduli, Young’s, shear, and
5] bulk, are required to always be positive. Hence when the
' relative correction reachesl this approach predicts that the
5 . , , . modulus of elasticity will become undefined. A physical in-
Y 02 04 06 0.8 1 terpretation is that the idea of static equilibrium cannot be
0 Level of disorder, k attained and the material enters a regieme dependent on the
material microstructure. For example, a foam may develop
regions of collapsed cells, whereas a granular material may
02 " 6)) exhibit dynamic failure such as slip deformatitit is ques-
5 tionable how valid this model is for large values lokince
g 047 the series expansion in E@19) generally works best for
£ (©) L :
3 smallk. If it is accepted for largd then the model predicts
¢ (e) : . . .
2 067 an undefined elastic modulus when the first relative correc-
& tion reaches—1. From Fig. 4c) this is the Bulk and the
081 \ Young's modulus and the exact point can be calculated from
(x+2)(x+1)
_AXTERXT ) (39)
4 : ‘ ; . A+2B+1
0 0.2 0.4 0.6 0.8 1

which for the values of, u, A, andB used above evaluates
to k=0.44 Another solution is possible for the Young's
modulus in the regiok>1 but has been discarded since it is
way beyond the validity of the homogenization process. For
these moduli the small fluctuation approximations are:

Level of disorder, k

FIG. 4. Relative correction of elastic moduli as a function of disorder:
Poisson’s ratio(a); Lameés constant,\ (b); Young's modulus,(c); shear
modulus(d); bulk modulus(e); and asymptotes for curved graptis

E=E(1-2.), (39
bulk modulus: = 1(1—0.88), (40)
K (x+D(x+2)

Should the model only be considered over sniathen the
For constan#, B, andy these relative corrections are plotted gradients of the linear approximatiopggs. (36)—(37) and
in Figs. 4a)—4(e). It is worth noting that the measure of (39—(41)] give a useful insight. Where a material is being
disorderk is the variance of shear modulus and is a squaréna.nufactured for a SpeCiﬁC elastic mOdUIUS, the fluctuations
measure of the disorder. The corrections shown in B@__ within the material give an element of Uncertainty as to the
(34) are proportiona| tok and so like Fortes and Ashby’s exact modulus of the final material. The linear approxima-
results are proportional to a square measure of disorder. Figions to the heterogeneous model indicate that the moduli
ures 4a) and 4b) show the Lameconstant\ and Poisson’s that are most sensitive are Lamieonstant\, bulk modulus,
ratio. An asymptote ak=0.8 is shown by a vertical in the and Young's modulus. Conversely the shear modulus and
same lines style as the function to which it pertains. Sincé0isson’s ratio are the most stable.
these moduli can be positive or negative, the relative correc-
tion can be larger thar-1. A material manufactured to be v|. DISCUSSION AND CONCLUSIONS

auxetic, therefore, will become conventional when the rela- _ _ _ _ _
tive correction to the Poisson’s ratio reached or p<o" It is attractive to use mean-field models when investigat-

= —7. The solution to Eq(30) for »<°"= —7 gives the level ing complex materials since perfectly ordered materials are
of fluctuations that turns an auxetic material conventionafarely seen or used. However, even if a mean-field model
and is shown in Eq(35) does produce results comparable to experiment, it is unclear

whether the parameters in the model reflect the microstruc-

2x(x+2
ke x(x+2)

~ 2A+4B—x-5" 39

For the values ofy, u, A, andB used above this returrs
~0.41. For small fluctuations, i.ek<0.2, the relative cor-

Downloaded 22 Feb 2008 to 144.173.6.75. Redistribution subject to AIP

ture of the material. In granular materials, mean field models
have been found fundamentally inadequétén the emerg-

ing topic of auxetic materials, mean-field models are widely
used to represent fundamentally disordered materials such as
foams. Calculations that extend from granular mechanics in-

license or copyright; see http://jap.aip.org/jap/copyright.jsp



J. Appl. Phys., Vol. 94, No. 9, 1 November 2003 Gaspar, Smith, and Evans 6149

dicate that the fluctuations within the material impose a largeial. When applied to granular mechanics, the continuum
correction to the mean-field response of the Poisson’s ratitength was found to be about 5 mean grain diaméteThis
among other moduli. An elementary 2D calculation of theexplains why theoretical work in granular mechanics that
magnitude of the correction to the mean-field response due tonly considers a distribution of single contacts has been
the level of disorder shows that it takes a little over 30%unsuccessful?” Theoretical work that is based on a con-
fluctuations in the shear modulus to reduce the magnitude dfnuum scale of 5 grain diameters is successful and is able to
the Poisson’s ratio by 50% for an initial Poisson’s ratio of reasonably predict the elastic moduli of granular matéfial.
v~—0.5. This information has important ramifications on the Since this continuum length lies between the microscale of
design of auxetic materials. Conversely, for an isotropicthe material and the macroscale, it is useful to term it the
g Y p
foam with a Poisson’s ratio af~—0.7, the correction to the mesoscale. As yet there has not been any work to find the
mean strain must be quite small, 30% at a theoretical maxieontinuum length of any of the typical auxetic materials or
mum. This would indicate that there is less than a 10% fluceven to characterize dominant length scales in classical
tuation in the elastic moduli of the material. This may seemfoams. Further work by the authors is underway to determine
quite small when considering the disorder that can be seethis continuum length scale within auxetic foams.
visually in something like a foam sample. This work is fo-
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