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Effect of heterogeneity on the elastic properties of auxetic materials
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Auxetic materials are gaining practical interest for their unusual and sometimes extreme mechanical
response. The process of modeling these materials so far has highlighted a number of
microstructural properties that are key to these materials. However these models often rely on the
assumption of homogeneity and order within the materials. Practically, a homogeneous auxetic
material such as foam is unlikely to be manufactured. This work seeks to analyze the effect of
fluctuations within the microstructure of the material. Numerical results show the effect of
fluctuations in an auxetic granular substance and analytical work indicates the relation between
microscale fluctuations and the elastic moduli for a general auxetic material. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1614847#
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I. INTRODUCTION

Auxetic materials, that is materials with a negative Po
son’s ratio, have long been recognized as a theore
possibility.1 A recent review of such materials is found
Evans and Alderson.2 Using isotropic elasticity, the con
straint of stability on strain energy gives the following limi
to the Poisson’s ration

In two dimension

21,n,1, ~1!

in three dimension

21,n, 1
2. ~2!

The ratio between the bulk modulusk, and shear modulusm,
can also be expressed in terms of the Poisson’s ratio

In two dimension

m

k
5

12n

11n
, ~3!

in three dimension

m

k
5

3~122n!

11n
. ~4!

The limits in Eq.~1! have a physical interpretation based
Eq. ~3!. The negative limit indicates a material that cann
change shape, the positive limit indicating a material t
cannot change volume. Where anisotropy can occur the P
son’s ratio has to be qualified to identify the axis and is th
not bound by these limits.3–5 For example, granular medi
displayn.1 under deviatoric loading; a phenomenon kno
as dilation that has only recently be adequately model6

Conversely, some auxetic materials can produce a Poiss
ratio as large as212.7

In 1987, Lakes8 fabricated a polymeric foam that exhib
ited a negative auxetic behavior. There are many other
terials ~real and hypothetical! that can also exhibit auxeti

a!Author to whom correspondence should be addressed; electronic
n.gaspar@physics.org
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behavior. An ~incomplete! list follows: polymeric foams;8

expanded polytetrafluoroethylene;7 cubic elemental solids
rare gases, many hypothetical carbon structu
a-crystobalite, zeolites and other crystal systems;4 keyed
brick structures;2 ultrahigh molecular weight polyethylene;9

polypropolyene ~PP!;10 auxetic granular materials;11

crumpled paper/entropic materials: membranes;12 skin;13 and
tethered networks.12

Qualitatively, the constitutive properties and microstru
ture vary greatly between auxetic materials. Some, such
thea-crystobalite or zeolites have a tightly constrained reg
lar geometric arrangement that is required for the aux
property. Materials such as polymeric foams or polyprop
ene have an array of constitutive elements whose prope
vary randomly through the material. Length scales too c
vary from the nanometer for molecular auxetics to the or
of a meter for keyed-brick structures.2 This variability in
auxetic materials makes theoretical modeling a comp
task. Practically it leads to specific models for each type
material. It is unlikely and unnecessary that a single mic
structural model can cover the full range of materials ho
ever it is reasonable to investigate some general prope
that will reflect on a broad range of auxetic materials.

Classical linear elasticity predicts that auxetic materi
have advantages over conventional materials. Hertz inde
tion theory predicts the radius of indentation to be prop
tional to (12n2)1/3 for a hard ball indenter.14 A conventional
foam has a Poisson’s ratio of about 0.3 but auxetic foa
have achievedn520.76. Hence the auxetic material a
proaches the limit of zero radius of indentation. The lar
ratio of shear modulus to bulk modulus in Eq.~4! is another
mechanical property that has already been utilized in the
sign of MAGNOX reactors. In this case the material has
large resistance to earthquake shocks~shear loading! but a
low resistance to thermal expansion~bulk loading!. With
these advantages in mind there are many possible use
materials with negative Poisson’s ratio. A problem that h
so far resisted large-scale manufacturing is the current ina
ity to make quantities of auxetic materials with consiste
properties at viable costs in a high volume manufactur
il:
3 © 2003 American Institute of Physics
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6144 J. Appl. Phys., Vol. 94, No. 9, 1 November 2003 Gaspar, Smith, and Evans
scenario. If this can be overcome then potential applicati
range from snap fasteners to orthopedic cushioning
ballistics.15

Materials in the real world inevitably have imperfectio
or random variations in material properties. Part of the pr
lem of manufacture is knowing how much these variatio
must be avoided or reduced to manufacture materials w
predictable large scale properties. The majority of the m
eling work to date utilizes a unit cell for the microscale f
the model and assumes that the bulk material is a hom
neous tesellating collection of these cells. This article
dresses the difference between a homogeneous model a
fluctuating or heterogeneous material by employing a
mogenization technique that has been successfully use
granular mechanics.3 Numerical results are obtained th
show the difference between a homogeneous material a
heterogeneous one. Then an analytic expression is prod
that relates the correction for heterogeneity to the leve
fluctuations within the material.

II. FOAM AND GRANULAR MODELS

Conventional models for a two dimensional~2D! foam
center around a hexagonal cell shape. For topolog
stability16 a 2D network should contain on average thr
contacts per node or six sides per cell, hence a hexagona
structure is well founded. To convert a physical foam sam
from conventional to auxetic behavior it is compressed a
heated in a prescribed manner. This process makes sig
cant changes to the microstructure that bring about
change in elastic properties.14 Existing models of auxetic
foam reflect this process by considering an altered
model. Masters and Evans17 use a re-entrant cell or hour
glass shape while Smithet al.18 consider a regular networ
that has certain connections broken.

In both cases elastic properties are ascribed to the
cell. This is calculated from assumed elastic properties of
ribs that make up the cells, along with the geometry of
cell and the symmetries that makes the cell tessalate. In
models mentioned above there are parameters that help
just the model to match experimental results. Masters
Evans17 identify a re-entrant cell structure that is nearly is
tropic while Smithet al.18 are able to model the strain de
pendent behavior. Both models demonstrate some impo
microstructural considerations in the mechanics of conv
tional and auxetic foams but leave an important ques
unanswered. Is the microstructure of the foam successf
being modeled to reproduce the macroscopic effects or
the models simply presenting a possible homogeneous
crostructure that has the same properties as a large samp
real foam? The difference matters when the model is as
to predict behavior beyond known data.

Another model of an auxetic material is that of a gran
lar medium.19,11For this medium to be auxetic the tangent
interaction between grains has to be larger than the nor
interaction. IfkN andkT are the normal and tangential elas
interactions between grains andj5kT /kN is the interaction
ratio, then the Poisson’s ratio is given by Eqs.~5! and ~6!.
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From these equations auxetic behavior is seen to occur
j.1

3D material:

n5
12j

41j
, ~5!

2D material:

n5
12j

31j
. ~6!

While this model of a strict granular material is hypothetic
since naturally occurring granular materials do not poss
this interaction, the theoretical concept can be applied
other materials. For instance, molecular structures can ha
larger resistance to tangential than normal displaceme
Beyond that application of ‘‘unusual grains’’ is a more ge
eral application. What actually is modeled is a random ar
of points interacting through noncentral forces. Other ma
rials that can be described in this way are foams. Rothenb
et al. give a good account of how their random netwo
model describes auxetic behavior in foams. They sugg
that the buckled beams that are observed in auxetic fo
have a weakened normal stiffness due to the buckle. Tak
this further, results will be drawn from granular mechanics
shed light on auxetic materials in particular auxetic foam

III. MEAN-FIELD APPROXIMATIONS

In a continuous material with stresss, and straine, con-
nected by an elastic stiffnessZ or complianceC5Z21 ~the
inverse of a fourth ordered tensor is defined as (I )abcd

21 I cde f

5daedb f) and with position variablex, the static equilibrium
can be expressed as a zero divergence of stress@Eqs. ~7!–
~9!#. This is arrived at by considering the force balance o
small unit volume

]sab

]xb
50, ~7!

or

]Zabcdecd

]xb
50, ~8!

or

]~C!abcd
21 ecd

]xb
50. ~9!

In the case of a homogeneous material the variablese andZ
are a constant function of positionx, and Eqs.~7!–~9! are
trivially satisfied. For a heterogeneous material in equil
rium the strain and elastic moduli become functions of po
tion x: e~x! andZ~x!. The local constitutive properties are

sab~x!5Zabcd~x!ecd~x!. ~10!

The aim is then to findZeff such that Eq.~11! is satisfied. The
over-bar indicates a volume average

sab5Zabcd
eff ēcd . ~11!
 license or copyright; see http://jap.aip.org/jap/copyright.jsp
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6145J. Appl. Phys., Vol. 94, No. 9, 1 November 2003 Gaspar, Smith, and Evans
How Zeff is arrived at from the field ofZ~x! is the process of
homogenization. The simplest methods are to calculate
arithmetic average

Zeff15
1

V E Z~x! ~12!

or the harmonic average

~Zeff2!215
1

V E ~Z~x!!21. ~13!

These two provide upper and lower bounds, effectiv
known as the mean strain and mean stress estimates
they are arrived at by assuming the strain~or stress! through-
out the material is equal to the mean of that quantity. Alt
native titles are the Voigt and Reuss estimates, respectiv
A consequence of these mean-field approximations is
Eq. ~10! is not satisfied. In the case of a mean-strain appro
mation equilibrium at a local scale is rejected, while in t
case of a mean-stress approximation, the strain field is
uniquely defined.

Fortes and Ashby20 find Reuss and Voigt limits for a 2D
cellular material. Using a honeycomb model with cell w
bending only the local Young’s modulusEU is given by

EU5
4ES

A~3!
S t0

l 0
D 3

, ~14!

wheret0 and l 0 are thickness and length respectively of c
walls andES is the Young’s modulus of the material th
makes up the cell walls. Mean stress and mean strain t
niques are applied to obtain the following limits.

EReuss<EU<EVoigt , ~15!

mean stress estimate:

EReuss

EU
512

5

2
d2~ l !22d2~ t !, ~16!

mean strain estimate:

EVoigt

EU
511d2~ l !1d2~ t !, ~17!

whered(x) is the half width of the distribution of a statistica
variablex normalized on the averagex̄. It is difficult to uti-
lize these results as only the Young’s modulus is calcula
and then only for a conventional hexagonal cell that in g
eral does not exhibit auxetic behavior that this work is int
ested in. What is significant that Fortes and Ashby highli
is that the spread in the Young’s modulus varies with squ
of the local fluctuations as measured byd ~•!.

IV. HOMOGENIZATION

Position dependent variables can be separated into
ume averaged and fluctuation quantities. The latter are
naled by a superscript ‘1’ thus: A(x)5Ā1A1. Strictly
speaking the fluctuation quantity should be written as a fu
tion of positionx, A1(x). For convenience this will be as
sumed. Applying the separation to Eq.~10! gives
Downloaded 22 Feb 2008 to 144.173.6.75. Redistribution subject to AIP
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s̄ab5Zabcd~x!ecd~x! ~18a!

5Z̄abcdēcd1Zabcd
1 ecd

1 1Z̄abcdē
11Zabcd

1 1 ēcd ~18b!

5Z̄abcdēcd1Zabcd
1 ecd

1 . ~18c!

The last two terms in Eq.~18b! contain the product of an
average and a fluctuator. By definition the average of th
quantities is zero. Kro¨ner21 has produced a solution to thi
problem for a disordered composite. Kro¨ner’s solution re-
quires equilibrium at the local scale so inherently corrects
errors introduced by the mean strain approach. The appro
arrives at a series solution@Eq. ~19!# of increasing correla-
tions of the local fluctuations of the stiffness. It should
noted that products of fourth-ordered tensor are of the dou
scalar kind: AB5AabcdBcde f . These correlations are
weighted by a mean tensorR whose nonzero componen
shown in Eq.~20! are factors of the mean Lame´ constantsl̄
and m̄. This of course requires that the material is mac
scopically isotropic

Z1e152Z1RZ11Z1RZ1RZ1

2Z1RZ1RZ1RZ11..., ~19!

R11115R22225
l̄15m̄

8m̄~ l̄12m̄ !
,

R11225R22115
2~ l̄1m̄ !

8m̄~ l̄12m̄ !
, ~20!

R12125R12215R21125R21215
l̄13m̄

8m̄~ l̄12m̄ !
.

The series solution is good for small fluctuations and
proaches a limit for a perfectly disordered material. Perf
disorder implies that the domain over which the local sti
ness is defined is infinitely small when compared to the
tent of the macroscale. In practice only the first term is
quired for a good correction to the mean strain value. In a
case higher terms are difficult to calculate since more inf
mation is required about the statistical makeup of the ma
rial in question. In two dimensions the isotropic elastic sti
ness has the following nonzero elements:

Z11115Z22225l12m,

Z11225Z22115l, ~21!

Z12125Z12215Z21125Z21215m.

Assuming that this holds at the short lengthscale as wel
the macroscale the correlationZ1Z1 in the first term of Eq.
~19! will contain the terms of the fluctuations of the Lam´
constants:(l1)2, (m1)2 andl1m1. It must be emphasized
that these results apply to any material that has local fluc
tions and the ability to define a continuous stiffness a
length scale that is significantly smaller than the macrosc
This technique has been successfully implemented by Ga
and Koenders22 where a significant advance is made in t
prediction of the shear modulus of granular assemblies.
find the values ofZ̄ and of the correlationsZ1Z1, data are
 license or copyright; see http://jap.aip.org/jap/copyright.jsp
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6146 J. Appl. Phys., Vol. 94, No. 9, 1 November 2003 Gaspar, Smith, and Evans
taken from a 2D simulation of a densely packed granu
assembly by Kuhn.23–25 The particle positions and interac
tions were taken from Kuhn’s simulation and used to cal
late the local continuum stiffness via a novel technique.26,27

This technique fits polynomials to the spin and displacem
of a small assembly of particles and the fitting criteria a
based on the equilibrium equations. By associating the
displacement gradient with a strain, and calculating a st
from a volume density of forces, a relationship is obtain
between the stress and strain of a small assembly of
material. From the field ofZ~x! the correlationsZ1Z1 can
be found and Kro¨ner’s homogenization technique applied.

The process is carried out here, but the simulation d
are treated as an auxetic material by altering the interac
between grains to induce auxetic behavior predicted
Bathurst and Rothenburg.11 A mean-strain modulus is calcu
lated that can be compared to the Bathurst and Rothenbu
prediction in Eq.~6!. A heterogeneous modulus is also ca
culated by adding the first term of Kro¨ner’s expansion@Eq.
~19!# to the mean-strain value. These results are show
Figs. 1, 2, and 3.

FIG. 1. Poisson ratio as a function of microscale interaction ratio. Bath
and Rothenburg’s model~solid!; mean strain calculation~1!; heterogeneous
calculation~3!.

FIG. 2. Shear modulus as a function of microscale interaction ratio. Bath
and Rothenburg’s model~solid!; mean strain calculation~1!; heterogeneous
calculation~3!.
Downloaded 22 Feb 2008 to 144.173.6.75. Redistribution subject to AIP
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In all three figures the mean-strain calculation agre
well with Bathurst and Rothenburg which is unsurprising
Koenders and Jenkins technique is very similar to that
Bathurst and Rothenburg. However, the heterogeneous
ues are significantly different. According to Eqs.~5! and ~6!
the mean-strain Poisson’s ratio as a function of interact
ratio j, will approach an asymptote ofn̄~`!→21. The het-
erogeneous calculation similarly has an asymptote bu
much reduced atn~`!→20.2. This shows that as with con
ventional granular media, considerations of the heterogen
of the material are important to for understanding the ela
response of a material with localized disorder. The sh
modulus although predicted to increase linearly withj by
mean strain assumptions, increases initially but cease
vary much withj for large values ofj. An important impli-
cation is that the large-scale elastic moduli are constrai
by their fluctuations through the material. For example,
this case, the shear modulus cannot be raised above a
by increasingj indefinitely. The limit is determined by the
fluctuations of elastic moduli. The bulk modulus who
mean strain prediction is a constant, where fluctuations
occur within the material, becomes a function of the mic
structure.

V. ANALYTICAL APPROACH IN 2D

A two-dimensional specialization of Kro¨ners method to
calculateZ1e1 shown in Gaspar27 produces slightly more
transparent results. Equations~22!–~24! show the calculation
of the principal moduli with the mean-strain and heterog
neous correction clearly separated

Z11115Z22225l̄12m̄2
~l1!212~l1m1!

l̄12m̄

2
~m1!2~ l̄15m̄ !

2m̄~ l̄12m̄ !
, ~22!

st

st

FIG. 3. Bulk modulus as a function of microscale interaction ratio. Bathu
and Rothenburg’s model~solid!; mean strain calculation~1!; heterogeneous
calculation~3!.
 license or copyright; see http://jap.aip.org/jap/copyright.jsp
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6147J. Appl. Phys., Vol. 94, No. 9, 1 November 2003 Gaspar, Smith, and Evans
Z11225Z22115l̄2
~l1!212~l1m1!

l̄12m̄

1
~m1!2~ l̄15m̄ !

2m̄~ l̄12m̄ !
, ~23!

Z12125Z21215Z12215Z21125m̄2
~m1!2~ l̄15m̄ !

2m̄~ l̄12m̄ !
. ~24!

The fluctuations of the material are captured in the corre
tions of the Lame´ constants:(l1)2, (m1)2 andl1m1. In-
formation on these quantities is then required to underst
the effect of disorder within the material. These can be n
malized bym̄ and(m1)2.

Z11115Z22225m̄F x̄121kS 2
A12B

x̄12
2

x̄15

2~ x̄12! D G ,
~25!

Z11225Z22115m̄F x̄1kS 2
A12B

x̄12
1

x̄15

2~ x̄12! D G , ~26!

Z12125Z21215Z12215Z21125m̄F12kS x̄13

2~ x̄12! D G , ~27!

where

A5
~l1!2

~m1!2
, B5

l1m1

~m1!2
, k5

~m1!2

m2
, x5

l̄

m̄
.

~28!

A typical auxetic foam sample has an̄520.5. From isotro-
pic elasticity this givesx522/3. Values forA and B are
difficult to arrive at. These are dependent on the microstr
ture of the material and have the potential to vary grea
However in 2D random networks like granular materials a
honeycombs, the constraint of topological stability would
quire a fluctuation in one elastic modulus to influence
other. This would imply a correlation betweenl andm and
little change inA andB from one material of this type to th
next. The values can be calculated by any technique
gives the position dependent elastic modulus for a mate
sample. Using the granular simulation mentioned in Sec
with the technique by Koenders and Jenkins,26,27values ofA
andB are calculated to be:A50.6 andB520.3. In support
of treating these as constants it should be noted that an
tropic elastic material that hasn→21 will have l/m→21.
So assuming that the fluctuations of a variable are roug
proportional to the mean, for a region of fixed Poisso
ratio, we can say
Downloaded 22 Feb 2008 to 144.173.6.75. Redistribution subject to AIP
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~l1!2;~m1!2}2~l1m1!. ~29!

The similarity between the two autocorrelates in Eq.~29!
indicates a value ofA to be about unity, which supports th
calculated value ofA50.6. The constant of proportionalit
in Eq. ~29! is bound between zero ifl andm are completely
independent and one ifl andm are perfectly correlated an
of equal mean. The reality, as already has been argued,
be a modest correlation and so a calculated value oB
520.3 is quite reasonable. Considering these arguments
calculated values ofA and B can be considered represent
tive of this class of materials.

Taking this further it can be seen that terms contain
A12B will then become small and the corrections will b
mainly dependent on the fluctuations in shear modulus. S
the auxetic response can be considered a feature of a ma
with a relatively large shear modulus it is not surprising th
fluctuations in the shear modulus will have a dominant eff
on the grand assembly moduli. If this is the case that term
A12B become small for a general auxetic material, then t
approach is well founded for general auxetic materials.

Using these assumptions the variance of the shear m
lus, (m1)2, is then a measure of the fluctuations within t
material. Some simple analysis can then take place on
variation of the heterogeneous moduli with changes in
level of disorder as quantified byk. Using these values the
relative correction to the elastic moduli can be calculated
a function of the level of disorderk in the material. All the
isotropic moduli can be obtained from Eqs.~25!–~27! via the
standard relations.

The relative corrections to the elastic moduli as obtain
from Eqs.~22!–~24! are

Poisson’s ratio:

ncorr

n̄
5

22~22A24B1x216x15!k

x~22x228x2812kA14kB1kx15k!
, ~30!

Lamé’s:

lcorr

l̄
5

k~22A24B1x15!

2x~x12!
, ~31!

shear modulus:

mcorr

m̄
52

k~x13!

2~x12!
, ~32!

Young’s modulus:
Ecorr

Ē
5

2~23kA26kB23k1x315x22kx2kAx22kBx12A14B17x15!k

~x11!~2x218x1822kA24kB2kx25k!
, ~33!
 license or copyright; see http://jap.aip.org/jap/copyright.jsp
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bulk modulus:

Kcorr

K̄
52

k~A12B11!

~x11!~x12!
. ~34!

For constantA, B, andx these relative corrections are plotte
in Figs. 4~a!–4~e!. It is worth noting that the measure o
disorderk is the variance of shear modulus and is a squ
measure of the disorder. The corrections shown in Eqs.~30!–
~34! are proportional tok and so like Fortes and Ashby’
results are proportional to a square measure of disorder.
ures 4~a! and 4~b! show the Lame´ constantl and Poisson’s
ratio. An asymptote atk50.8 is shown by a vertical in the
same lines style as the function to which it pertains. Sin
these moduli can be positive or negative, the relative cor
tion can be larger than21. A material manufactured to b
auxetic, therefore, will become conventional when the re
tive correction to the Poisson’s ratio reaches21 or ncorr

52 n̄. The solution to Eq.~30! for ncorr52 n̄ gives the level
of fluctuations that turns an auxetic material conventio
and is shown in Eq.~35!

k5
2x~x12!

2A14B2x25
. ~35!

For the values ofx, m, A, andB used above this returnsk
'0.41. For small fluctuations, i.e.,k,0.2, the relative cor-

FIG. 4. Relative correction of elastic moduli as a function of disord
Poisson’s ratio~a!; Lamé’s constant,l ~b!; Young’s modulus,~c!; shear
modulus~d!; bulk modulus~e!; and asymptotes for curved graphs~f!.
Downloaded 22 Feb 2008 to 144.173.6.75. Redistribution subject to AIP
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rection the the Poisson’s ratio is roughly linear with ze
intercept and a gradient of20.25. So a suitable approxima
tion is

n5 n̄~121.65k!. ~36!

The equivalent for the Lame´ constantl is

l5l̄~122.50k!. ~37!

The other principal elastic moduli, Young’s, shear, a
bulk, are required to always be positive. Hence when
relative correction reaches21 this approach predicts that th
modulus of elasticity will become undefined. A physical i
terpretation is that the idea of static equilibrium cannot
attained and the material enters a regieme dependent o
material microstructure. For example, a foam may deve
regions of collapsed cells, whereas a granular material m
exhibit dynamic failure such as slip deformation.28 It is ques-
tionable how valid this model is for large values ofk since
the series expansion in Eq.~19! generally works best for
small k. If it is accepted for largek then the model predicts
an undefined elastic modulus when the first relative corr
tion reaches21. From Fig. 4~c! this is the Bulk and the
Young’s modulus and the exact point can be calculated fr

k5
~x12!~x11!

A12B11
, ~38!

which for the values ofx, m, A, andB used above evaluate
to k'0.44 Another solution is possible for the Young
modulus in the regionk.1 but has been discarded since it
way beyond the validity of the homogenization process. F
these moduli the small fluctuation approximations are:

E5Ē~122.0k!, ~39!

m5m̄~120.88k!, ~40!

K5K̄~122.25k!. ~41!

Should the model only be considered over smallk then the
gradients of the linear approximations@Eqs. ~36!–~37! and
~39!–~41!# give a useful insight. Where a material is bein
manufactured for a specific elastic modulus, the fluctuati
within the material give an element of uncertainty as to
exact modulus of the final material. The linear approxim
tions to the heterogeneous model indicate that the mo
that are most sensitive are Lame´’s constantl, bulk modulus,
and Young’s modulus. Conversely the shear modulus
Poisson’s ratio are the most stable.

VI. DISCUSSION AND CONCLUSIONS

It is attractive to use mean-field models when investig
ing complex materials since perfectly ordered materials
rarely seen or used. However, even if a mean-field mo
does produce results comparable to experiment, it is unc
whether the parameters in the model reflect the microst
ture of the material. In granular materials, mean field mod
have been found fundamentally inadequate.27 In the emerg-
ing topic of auxetic materials, mean-field models are wid
used to represent fundamentally disordered materials suc
foams. Calculations that extend from granular mechanics

:
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dicate that the fluctuations within the material impose a la
correction to the mean-field response of the Poisson’s r
among other moduli. An elementary 2D calculation of t
magnitude of the correction to the mean-field response du
the level of disorder shows that it takes a little over 30
fluctuations in the shear modulus to reduce the magnitud
the Poisson’s ratio by 50% for an initial Poisson’s ratio
n'20.5. This information has important ramifications on t
design of auxetic materials. Conversely, for an isotro
foam with a Poisson’s ratio ofn'20.7, the correction to the
mean strain must be quite small, 30% at a theoretical m
mum. This would indicate that there is less than a 10% fl
tuation in the elastic moduli of the material. This may se
quite small when considering the disorder that can be s
visually in something like a foam sample. This work is f
cused on a 2D isotropic material and a 2D specialization
Kröner’s homogenization technique. The extension to
would remove the transparency but could nevertheless re
useful information. Torquato29 uses the approach of spheric
inclusions in a matrix to calculate the moduli of an effecti
medium. This approach works best for dillute concentratio
of inclusions where no interaction is considered between
clusions. The first term of Kro¨ner’s expansion in Eq.~19!
contains the two-point correlation function of the stiffne
fluctuations so includes interactions between two inclusi
or stiffness points. This is an advantage for modeling a m
terial that has a modulus that varies continuously.

Figure 4 shows that the bulk scale moduli when c
rected for disorder have differing responses to the leve
disorder. This is important to consider when characterizin
material. In this case the Poisson’s ratio and Lame´ constantl
are more sensitive to fluctuations in a material than
Young’s, bulk, and shear moduli. For example, when a se
samples of a material are being charceterized, the Poiss
ratio is a more sensitive measure of consistancy betw
samples than the Young’s modulus.

One other question remains unanswered: Is it valid
define an elastic moduli over a single foam cell? The ela
moduli are a relationship between the stress and strai
displacement gradient. If this gradient cannot be defined t
the strain and therefore elastic moduli cannot be defined.
material that contains sharp steps between materials suc
the ribs in a foam or voids in a granular material, it is n
clear whether the displacement gradient has a definition.
large enough sample of the material is used then the s
between materials become insignificant and these ela
variables can be used. What is then required is a mean
find out how large this sample of the material has to
Koenders30 provides a key to answering this question by p
dicting spatial features within a heterogeneous material
der a persistent strain path. These spatial features lead
length measurement of the continuum scale within the m
Downloaded 22 Feb 2008 to 144.173.6.75. Redistribution subject to AIP
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rial. When applied to granular mechanics, the continu
length was found to be about 5 mean grain diameters.27 This
explains why theoretical work in granular mechanics th
only considers a distribution of single contacts has be
unsuccessful.3,27 Theoretical work that is based on a co
tinuum scale of 5 grain diameters is successful and is abl
reasonably predict the elastic moduli of granular materia22

Since this continuum length lies between the microscale
the material and the macroscale, it is useful to term it
mesoscale. As yet there has not been any work to find
continuum length of any of the typical auxetic materials
even to characterize dominant length scales in class
foams. Further work by the authors is underway to determ
this continuum length scale within auxetic foams.
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