2,106 research outputs found

    Role of homeostasis in learning sparse representations

    Full text link
    Neurons in the input layer of primary visual cortex in primates develop edge-like receptive fields. One approach to understanding the emergence of this response is to state that neural activity has to efficiently represent sensory data with respect to the statistics of natural scenes. Furthermore, it is believed that such an efficient coding is achieved using a competition across neurons so as to generate a sparse representation, that is, where a relatively small number of neurons are simultaneously active. Indeed, different models of sparse coding, coupled with Hebbian learning and homeostasis, have been proposed that successfully match the observed emergent response. However, the specific role of homeostasis in learning such sparse representations is still largely unknown. By quantitatively assessing the efficiency of the neural representation during learning, we derive a cooperative homeostasis mechanism that optimally tunes the competition between neurons within the sparse coding algorithm. We apply this homeostasis while learning small patches taken from natural images and compare its efficiency with state-of-the-art algorithms. Results show that while different sparse coding algorithms give similar coding results, the homeostasis provides an optimal balance for the representation of natural images within the population of neurons. Competition in sparse coding is optimized when it is fair. By contributing to optimizing statistical competition across neurons, homeostasis is crucial in providing a more efficient solution to the emergence of independent components

    DRAM-3 modulates autophagy and promotes cell survival in the absence of glucose

    Get PDF
    Macroautophagy is a membrane-trafficking process that delivers cytoplasmic constituents to lysosomes for degradation. The process operates under basal conditions as a mechanism to turnover damaged or misfolded proteins and organelles. As a result, it has a major role in preserving cellular integrity and viability. In addition to this basal function, macroautophagy can also be modulated in response to various forms of cellular stress, and the rate and cargoes of macroautophagy can be tailored to facilitate appropriate cellular responses in particular situations. The macroautophagy machinery is regulated by a group of evolutionarily conserved autophagy-related (ATG) proteins and by several other autophagy regulators, which either have tissue-restricted expression or operate in specific contexts. We report here the characterization of a novel autophagy regulator that we have termed DRAM-3 due to its significant homology to damage-regulated autophagy modulator (DRAM-1). DRAM-3 is expressed in a broad spectrum of normal tissues and tumor cells, but different from DRAM-1, DRAM-3 is not induced by p53 or DNA-damaging agents. Immunofluorescence studies revealed that DRAM-3 localizes to lysosomes/autolysosomes, endosomes and the plasma membrane, but not the endoplasmic reticulum, phagophores, autophagosomes or Golgi, indicating significant overlap with DRAM-1 localization and with organelles associated with macroautophagy. In this regard, we further proceed to show that DRAM-3 expression causes accumulation of autophagosomes under basal conditions and enhances autophagic flux. Reciprocally, CRISPR/Cas9-mediated disruption of DRAM-3 impairs autophagic flux confirming that DRAM-3 is a modulator of macroautophagy. As macroautophagy can be cytoprotective under starvation conditions, we also tested whether DRAM-3 could promote survival on nutrient deprivation. This revealed that DRAM-3 can repress cell death and promote long-term clonogenic survival of cells grown in the absence of glucose. Interestingly, however, this effect is macroautophagy-independent. In summary, these findings constitute the primary characterization of DRAM-3 as a modulator of both macroautophagy and cell survival under starvation conditions

    Measurement of the B0_s semileptonic branching ratio to an orbitally excited D_s** state, Br(B0_s -> Ds1(2536) mu nu)

    Get PDF
    In a data sample of approximately 1.3 fb-1 collected with the D0 detector between 2002 and 2006, the orbitally excited charm state D_s1(2536) has been observed with a measured mass of 2535.7 +/- 0.6 (stat) +/- 0.5 (syst) MeV via the decay mode B0_s -> D_s1(2536) mu nu X. A first measurement is made of the branching ratio product Br(b(bar) -> D_s1(2536) mu nu X).Br(D_s1(2536)->D* K0_S). Assuming that D_s1(2536) production in semileptonic decay is entirely from B0_s, an extraction of the semileptonic branching ratio Br(B0_s -> D_s1(2536) mu nu X) is made.Comment: 7 pages, 2 figures, LaTeX, version with minor changes as accepted by Phys. Rev. Let

    Simultaneous measurement of the ratio B(t->Wb)/B(t->Wq) and the top quark pair production cross section with the D0 detector at sqrt(s)=1.96 TeV

    Get PDF
    We present the first simultaneous measurement of the ratio of branching fractions, R=B(t->Wb)/B(t->Wq), with q being a d, s, or b quark, and the top quark pair production cross section sigma_ttbar in the lepton plus jets channel using 0.9 fb-1 of ppbar collision data at sqrt(s)=1.96 TeV collected with the D0 detector. We extract R and sigma_ttbar by analyzing samples of events with 0, 1 and >= 2 identified b jets. We measure R = 0.97 +0.09-0.08 (stat+syst) and sigma_ttbar = 8.18 +0.90-0.84 (stat+syst)} +/-0.50 (lumi) pb, in agreement with the standard model prediction.Comment: submitted to Phys.Rev.Letter

    Search for charged Higgs bosons decaying to top and bottom quarks in ppbar collisions

    Get PDF
    We describe a search for production of a charged Higgs boson, q \bar{q'} -> H^+, reconstructed in the t\bar{b} final state in the mass range 180 <= M_{H^+} <= 300 GeV. The search was undertaken at the Fermilab Tevatron collider with a center-of-mass energy sqrt{s} = 1.96 TeV and uses 0.9 fb^{-1} of data collected with the D0 detector. We find no evidence for charged Higgs boson production and set upper limits on the production cross section in the Types I, II and III two-Higgs-doublet models (2HDMs). An excluded region in the (M_{H^+},tan\beta) plane for Type I 2HDM is presented.Comment: Submitted to Phys. Rev. Letter

    Journal Staff

    Get PDF
    We present the first measurements of the differential cross section d sigma/dp(T)(gamma) for the production of an isolated photon in association with at least two b-quark jets. The measurements consider photons with rapidities vertical bar y(gamma)vertical bar &lt; 1.0 and transverse momenta 30 &lt; p(T)(gamma) &lt; 200 GeV. The b-quark jets are required to have p(T)(jet) &gt; 15 GeVand vertical bar y(jet)vertical bar &lt; 1.5. The ratio of differential production cross sections for gamma + 2 b-jets to gamma + b-jet as a function of p(T)(gamma) is also presented. The results are based on the proton-antiproton collision data at root s = 1.96 TeV collected with the D0 detector at the Fermilab Tevatron Collider. The measured cross sections and their ratios are compared to the next- to- leading order perturbative QCD calculations as well as predictions based on the k(T)- factorization approach and those from the sherpa and pythia Monte Carlo event generators

    Measurement of the forward-backward charge asymmetry and extraction of sin^2Theta^{eff}_W in ppbar -> Z/\gamma^{*}+X -> e+e+X events produced at \sqrt{s}=1.96 TeV

    Get PDF
    We present a measurement of the forward-backward charge asymmetry (AFBA_{FB}) in ppˉZ/γ+Xe+e+Xp\bar{p} \to Z/\gamma^{*}+X \to e^+e^-+X events at a center-of-mass energy of 1.96 TeV using 1.1 fb1^{-1} of data collected with the D0 detector at the Fermilab Tevatron collider. AFBA_{FB} is measured as a function of the invariant mass of the electron-positron pair, and found to be consistent with the standard model prediction. We use the AFBA_{FB} measurement to extract the effective weak mixing angle sin2ThetaWeff=0.2327±0.0018(stat.)±0.0006(syst.)sin^2Theta^{eff}_W = 0.2327 \pm 0.0018 (stat.) \pm 0.0006 (syst.).Comment: 7 Pages, 1 Figure, 3 Tables, Accepted by Phys. Rev. Let

    Measurement of the semileptonic charge asymmetry in B0 meson mixing with the D0 detector

    Get PDF
    We present a measurement of the semileptonic mixing asymmetry for B0 mesons, a^d_{sl}, using two independent decay channels: B0 -> mu+D-X, with D- -> K+pi-pi-; and B0 -> mu+D*-X, with D*- -> antiD0 pi-, antiD0 -> K+pi- (and charge conjugate processes). We use a data sample corresponding to 10.4 fb^{-1} of ppbar collisions at sqrt(s) = 1.96 TeV, collected with the D0 experiment at the Fermilab Tevatron collider. We extract the charge asymmetries in these two channels as a function of the visible proper decay length (VPDL) of the B0 meson, correct for detector-related asymmetries using data-driven methods, and account for dilution from charge-symmetric processes using Monte Carlo simulation. The final measurement combines four signal VPDL regions for each channel, yielding a^d_{sl} = [0.68 \pm 0.45 \text{(stat.)} \pm 0.14 \text{(syst.)}]%. This is the single most precise measurement of this parameter, with uncertainties smaller than the current world average of B factory measurements.Comment: Version includes minor textual changes following peer review by journal, most notably the updating of Ref. [21] to reflect the most recent publicatio

    Measurement of the t-channel single top quark production cross section

    Get PDF
    The D0 collaboration reports direct evidence for electroweak production of single top quarks through the t-channel exchange of a virtual W boson. This is the first analysis to isolate an individual single top quark production channel. We select events containing an isolated electron or muon, missing transverse energy, and two, three or four jets from 2.3 fb^-1 of ppbar collisions at the Fermilab Tevatron Collider. One or two of the jets are identified as containing a b hadron. We combine three multivariate techniques optimized for the t-channel process to measure the t- and s-channel cross sections simultaneously. We measure cross sections of 3.14 +0.94 -0.80 pb for the t-channel and 1.05 +-0.81 pb for the s-channel. The measured t-channel result is found to have a significance of 4.8 standard deviations and is consistent with the standard model prediction.Comment: 7 pages, 6 figure
    corecore