110 research outputs found

    Performance of miniaturized atomic clocks in static laboratory and dynamic flight environments

    Get PDF
    Miniaturized atomic clocks with high frequency stability as local oscillators in global navigation satellite system (GNSS) receivers promise to improve real-time kinematic applications. For a number of years, such oscillators are being investigated regarding their overall technical applicability, i.e., transportability, and performance in dynamic environments. The short-term frequency stability of these clocks is usually specified by the manufacturer, being valid for stationary applications. Since the performance of most oscillators is likely degraded in dynamic conditions, various oscillators are tested to find the limits of receiver clock modeling in dynamic cases and consequently derive adequate stochastic models to be used in navigation. We present the performance of three different oscillators (Microsemi MAC SA.35m, Spectratime LCR-900 and Stanford Research Systems SC10) for static and dynamic applications. For the static case, all three oscillators are characterized in terms of their frequency stability at Physikalisch-Technische Bundesanstalt, Germany's national metrology institute. The resulting Allan deviations agree well with the manufacturer's data. Furthermore, a flight experiment was conducted in order to evaluate the performance of the oscillators under dynamic conditions. Here, each oscillator is replacing the internal oscillator of a geodetic-grade GNSS receiver and the stability of the receiver clock biases is determined. The time and frequency offsets of the oscillators are characterized with regard to the flight dynamics recorded by a navigation-grade inertial measurement unit. The results of the experiment show that the frequency stability of each oscillator is degraded by about at least one order of magnitude compared to the static case. Also, the two quartz oscillators show a significant g-sensitivity resulting in frequency shifts of - 1.2 × 10 [hoch -9] and + 1.5 × 10 [hoch -9], respectively, while the rubidium clocks are less sensitive, thus enabling receiver clock modeling and strengthening of the navigation performance even in high dynamics. © 2020, The Author(s)

    Characterization of a 450-km Baseline GPS Carrier-Phase Link using an Optical Fiber Link

    Get PDF
    A GPS carrier-phase frequency transfer link along a baseline of 450 km has been established and is characterized by comparing it to a phase-stabilized optical fiber link of 920 km length, established between the two endpoints, the Max-Planck-Institut f\"ur Quantenoptik in Garching and the Physikalisch-Technische Bundesanstalt in Braunschweig. The characterization is accomplished by comparing two active hydrogen masers operated at both institutes. The masers serve as local oscillators and cancel out when the double differences are calculated, such that they do not constitute a limitation for the GPS link characterization. We achieve a frequency instability of 3 x 10^(-13) in 30 s and 5 x 10^(-16) for long averaging times. Frequency comparison results obtained via both links show no deviation larger than the statistical uncertainty of 6 x 10^(-16). These results can be interpreted as a successful cross-check of the measurement uncertainty of a truly remote end fiber link.Comment: 14 pages, 6 figure

    Potential of GPS Common Clock Single-differences for Deformation Monitoring

    Get PDF
    Global satellite navigation systems (GNSS) are a standard measurement device for deformation monitoring. In many applications, double-differences are used to reduce distance dependent systematic effects, as well as to eliminate the receiver and satellites clock errors. However, due to the navigation principle of one way ranging used in GPS, the geometry of the subsequent adjustment is weakened. As a result, the height component is generally determined three times less precisely than the horizontal coordinates. In addition, large correlations between the height and elevation dependent effects exist such as tropospheric refraction, mismodelled phase center variations, or multipath which restricts the attainable accuracy. However, for a kinematic analysis, i. e. for estimating high rate coordinate time series, the situation can be significantly improved if a common clock is connected to different GNSS receivers in a network or on a baseline. Consequently, between-station single-differences are sufficient to solve for the baseline coordinates. The positioning geometry is significantly improved which is reflected by a reduction of the standard deviation of kinematic heights by about a factor 3 underlining the benefits of this new approach. Real data from baselines at the Physikalisch-Technische Bundesanstalt campus at Braunschweig where receivers are connected over 290 m via an optical fiber link to a common clock was analysed. © 2016 Walter de Gruyter GmbH, Berlin/Munich/Boston

    Challenges Of Production Planning And Control For Powder Bed Fusion Of Metal With Laser Beam: A Perspective From The Industry

    Get PDF
    Due to technological advance, the Additive Manufacturing (AM) technology Powder Bed Fusion of Metal with Laser Beam (PBF-LB/M) is in widespread industrial use. PBF-LB/M offers the flexibility to generate different geometries in one build job independent of tools. Therefore, exploiting tool-dependent economies of scale is not required for efficient manufacturing of various complex geometries in small quantities. However, PBF LB/M production lines are capital intensive and include post-processing steps. Thus, high utilization and low work in process must be ensured to minimize costs, but reaching high utilization contradicts minimizing work in process and throughput time. In production planning and control (PPC), the trade-off between those production logistics key performance indicators (KPIs) is optimized. The advantage of flexibility to manufacture various geometries in one build job of PBF-LB/M comes with challenges for PPC. In this work, those challenges are analysed to derive implications for improvement, based on interviews with experts from the industry. Results show a need for PBF LB/M specific PPC. The need is higher the greater the technological control of PBF LB/M and the volume of a product program of a company are. Unlike for Conventional Manufacturing (CM), nesting and scheduling cannot be addressed separately in PPC for PBF LB/M. Thus, the optimization of production logistics KPIs is more complex due to more degrees of freedom. Combined with a typically shorter planning horizon for AM, this requires automated optimization software tools for combined nesting and scheduling. Currently, PPC that considers AM characteristics does not address CM steps in the post-process adequately, even though they cause a large proportion of effort and time. Furthermore, high automatization parallel to heterogenous manual tasks require a low number of workers with training in various skills

    A shock recovery experiment and its implications for Mercury's surface : The effect of high pressure on porous olivine powder as a regolith analog

    Get PDF
    We conducted classic dynamic high - pressure experiments on porous San Carlos (SC) olivine powder to examine if and how different shock stages modify corresponding reflectance mid – infrared (MIR) spectra. Microscopic investigation of the thin sections produced of our shocked samples indicates local peak pressures of >60 GPa along with all lower grade shock stages. Spectral analyses of optically identified shock areas were documented and compared in terms of Christiansen Feature (CF) and the position of olivine – diagnostic Reststrahlenbands (RBs). We found that one RB (fundamental vibrations of the orthosilicate - ion) of olivine occurring at 980 cm−1 (corresponding to ≈ 10.2 μm) shows the least energetic shift in the investigated MIR spectra and could therefore serve as a proxy for the presence of olivine in remote sensing application. Furthermore, a peak located at ≈ 1060 cm−1 (≈ 9.4 μm) shows a significant intensity change probably related to the degree of shock exposure or grain orientation effects, as we observe a decline in intensity of this band from our averaged reference olivine spectra of our IRIS database (diffuse reflectance measurement) down to spectra of grains showing mosaicism and recrystallized areas. We also report the presence of a weak band in some of the olivine spectra located at ≈ 1100 cm−1 (9.1 μm) that has an influence on the position of the CF when spectral data of olivine are averaged.Peer reviewe

    openBIS: a flexible framework for managing and analyzing complex data in biology research

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Modern data generation techniques used in distributed systems biology research projects often create datasets of enormous size and diversity. We argue that in order to overcome the challenge of managing those large quantitative datasets and maximise the biological information extracted from them, a sound information system is required. Ease of integration with data analysis pipelines and other computational tools is a key requirement for it.</p> <p>Results</p> <p>We have developed openBIS, an open source software framework for constructing user-friendly, scalable and powerful information systems for data and metadata acquired in biological experiments. openBIS enables users to collect, integrate, share, publish data and to connect to data processing pipelines. This framework can be extended and has been customized for different data types acquired by a range of technologies.</p> <p>Conclusions</p> <p>openBIS is currently being used by several SystemsX.ch and EU projects applying mass spectrometric measurements of metabolites and proteins, High Content Screening, or Next Generation Sequencing technologies. The attributes that make it interesting to a large research community involved in systems biology projects include versatility, simplicity in deployment, scalability to very large data, flexibility to handle any biological data type and extensibility to the needs of any research domain.</p

    COVID19 Disease Map, a computational knowledge repository of virus-host interaction mechanisms.

    Get PDF
    Funder: Bundesministerium für Bildung und ForschungFunder: Bundesministerium für Bildung und Forschung (BMBF)We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective

    Protein tyrosine phosphatases expression during development of mouse superior colliculus

    Get PDF
    Protein tyrosine phosphatases (PTPs) are key regulators of different processes during development of the central nervous system. However, expression patterns and potential roles of PTPs in the developing superior colliculus remain poorly investigated. In this study, a degenerate primer-based reverse transcription-polymerase chain reaction (RT-PCR) approach was used to isolate seven different intracellular PTPs and nine different receptor-type PTPs (RPTPs) from embryonic E15 mouse superior colliculus. Subsequently, the expression patterns of 11 PTPs (TC-PTP, PTP1C, PTP1D, PTP-MEG2, PTP-PEST, RPTPJ, RPTPε, RPTPRR, RPTPσ, RPTPκ and RPTPγ) were further analyzed in detail in superior colliculus from embryonic E13 to postnatal P20 stages by quantitative real-time RT-PCR, Western blotting and immunohistochemistry. Each of the 11 PTPs exhibits distinct spatiotemporal regulation of mRNAs and proteins in the developing superior colliculus suggesting their versatile roles in genesis of neuronal and glial cells and retinocollicular topographic mapping. At E13, additional double-immunohistochemical analysis revealed the expression of PTPs in collicular nestin-positive neural progenitor cells and RC-2-immunoreactive radial glia cells, indicating the potential functional importance of PTPs in neurogenesis and gliogenesis
    corecore