75 research outputs found

    Overview of SAND-E: Semi-Autonomous Navigation for Detrital Environments

    Get PDF
    Rovers are the state of the art for the exploration and detection of past habitability and life on other worlds. One of the most basic functions of a rover is terrain navigation. Information collected by the rover is used autonomously to mitigate terrain hazards such large rocks, while humans qualitatively assess hazardous geologic terrain such as soil type and degree of rock cover. Planetary scientists use the same information to select targets such as drill sites, and for basic scientific analysis such as characterization of rock outcrops. Although the data is complementary, data from terrain analysis for navigation and terrain analysis for scientific investigations are poorly integrated. The lack of integration creates science and operation inefficiencies that limit exploration of habitable environments. As new modes of exploration come online, such as unmanned aerial systems (UAS) (e.g., the Mars Helicopter Scout and Titan Dragonfly), a need exists to integrate terrain data and science analysis to improve operational and scientific outcomes during exploration. We present an overview of a project aimed at evaluating the effectiveness and capability rover and UAS-based semi-automated terrain analysis using the Automated Soil Assessment Systems (ASAS) developed by Mission Control Space Services for navigating, selecting targets for sampling, and characterizing mafic detrital sediments along glacio-fluvial-aeolian sand transport pathways in Iceland. We describe recent advances in automated terrain analysis in sandy environments and scientific uses of terrain assessment from sandy environments. We assess fluvial and aeolian terrains in Iceland and show how terrain analysis data can inform scientific characterization of these environments

    A mission control architecture for robotic lunar sample return as field tested in an analogue deployment to the Sudbury impact structure

    Get PDF
    A Mission Control Architecture is presented for a Robotic Lunar Sample Return Mission which builds upon the experience of the landed missions of the NASA Mars Exploration Program. This architecture consists of four separate processes working in parallel at Mission Control and achieving buy-in for plans sequentially instead of simultaneously from all members of the team. These four processes were: Science Processing, Science Interpretation, Planning and Mission Evaluation. Science Processing was responsible for creating products from data downlinked from the field and is organized by instrument. Science Interpretation was responsible for determining whether or not science goals are being met and what measurements need to be taken to satisfy these goals. The Planning process, responsible for scheduling and sequencing observations, and the Evaluation process that fostered inter-process communications, reporting and documentation assisted these processes. This organization is advantageous for its flexibility as shown by the ability of the structure to produce plans for the rover every two hours, for the rapidity with which Mission Control team members may be trained and for the relatively small size of each individual team. This architecture was tested in an analogue mission to the Sudbury impact structure from June 6-17, 2011. A rover was used which was capable of developing a network of locations that could be revisited using a teach and repeat method. This allowed the science team to process several different outcrops in parallel, downselecting at each stage to ensure that the samples selected for caching were the most representative of the site. Over the course of 10 days, 18 rock samples were collected from 5 different outcrops, 182 individual field activities - such as roving or acquiring an image mosaic or other data product - were completed within 43 command cycles, and the rover travelled over 2,200 m. Data transfer from communications passes were filled to 74%. Sample triage was simulated to allow down-selection to 1kg of material for return to Earth

    Effect of nesiritide in patients with acute decompensated heart failure.

    Get PDF
    BACKGROUND: Nesiritide is approved in the United States for early relief of dyspnea in patients with acute heart failure. Previous meta-analyses have raised questions regarding renal toxicity and the mortality associated with this agent. METHODS: We randomly assigned 7141 patients who were hospitalized with acute heart failure to receive either nesiritide or placebo for 24 to 168 hours in addition to standard care. Coprimary end points were the change in dyspnea at 6 and 24 hours, as measured on a 7-point Likert scale, and the composite end point of rehospitalization for heart failure or death within 30 days. RESULTS: Patients randomly assigned to nesiritide, as compared with those assigned to placebo, more frequently reported markedly or moderately improved dyspnea at 6 hours (44.5% vs. 42.1%, P=0.03) and 24 hours (68.2% vs. 66.1%, P=0.007), but the prespecified level for significance (P≤0.005 for both assessments or P≤0.0025 for either) was not met. The rate of rehospitalization for heart failure or death from any cause within 30 days was 9.4% in the nesiritide group versus 10.1% in the placebo group (absolute difference, -0.7 percentage points; 95% confidence interval [CI], -2.1 to 0.7; P=0.31). There were no significant differences in rates of death from any cause at 30 days (3.6% with nesiritide vs. 4.0% with placebo; absolute difference, -0.4 percentage points; 95% CI, -1.3 to 0.5) or rates of worsening renal function, defined by more than a 25% decrease in the estimated glomerular filtration rate (31.4% vs. 29.5%; odds ratio, 1.09; 95% CI, 0.98 to 1.21; P=0.11). CONCLUSIONS: Nesiritide was not associated with an increase or a decrease in the rate of death and rehospitalization and had a small, nonsignificant effect on dyspnea when used in combination with other therapies. It was not associated with a worsening of renal function, but it was associated with an increase in rates of hypotension. On the basis of these results, nesiritide cannot be recommended for routine use in the broad population of patients with acute heart failure. (Funded by Scios; ClinicalTrials.gov number, NCT00475852.

    Posters display III clinical outcome and PET

    Get PDF

    Effect of Systemic Hypertension With Versus Without Left Ventricular Hypertrophy on the Progression of Atrial Fibrillation (from the Euro Heart Survey).

    Get PDF
    Hypertension is a risk factor for both progression of atrial fibrillation (AF) and development of AF-related complications, that is major adverse cardiac and cerebrovascular events (MACCE). It is unknown whether left ventricular hypertrophy (LVH) as a consequence of hypertension is also a risk factor for both these end points. We aimed to assess this in low-risk AF patients, also assessing gender-related differences. We included 799 patients from the Euro Heart Survey with nonvalvular AF and a baseline echocardiogram. Patients with and without hypertension were included. End points after 1 year were occurrence of AF progression, that is paroxysmal AF becoming persistent and/or permanent AF, and MACCE. Echocardiographic LVH was present in 33% of 379 hypertensive patients. AF progression after 1 year occurred in 10.2% of 373 patients with rhythm follow-up. In hypertensive patients with LVH, AF progression occurred more frequently as compared with hypertensive patients without LVH (23.3% vs 8.8%, p = 0.011). In hypertensive AF patients, LVH was the most important multivariably adjusted determinant of AF progression on multivariable logistic regression (odds ratio 4.84, 95% confidence interval 1.70 to 13.78, p = 0.003). This effect was only seen in male patients (27.5% vs 5.8%, p = 0.002), while in female hypertensive patients, no differences were found in AF progression rates regarding the presence or absence of LVH (15.2% vs 15.0%, p = 0.999). No differences were seen in MACCE for hypertensive patients with and without LVH. In conclusion, in men with hypertension, LVH is associated with AF progression. This association seems to be absent in hypertensive women

    Progression From Paroxysmal to Persistent Atrial Fibrillation. Clinical Correlates and Prognosis

    Get PDF
    Objectives: We investigated clinical correlates of atrial fibrillation (AF) progression and evaluated the prognosis of patients demonstrating AF progression in a large population. Background: Progression of paroxysmal AF to more sustained forms is frequently seen. However, not all patients will progress to persistent AF. Methods: We included 1,219 patients with paroxysmal AF who participated in the Euro Heart Survey on AF and had a known rhythm status at follow-up. Patients who experienced AF progression after 1 year of follow-up were identified. Results: Progression of AF occurred in 178 (15%) patients. Multivariate analysis showed that heart failure, age, previous transient ischemic attack or stroke, chronic obstructive pulmonary disease, and hypertension were the only independent predictors of AF progression. Using the regression coefficient as a benchmark, we calculated the HATCH score. Nearly 50% of the patients with a HATCH score >5 progressed to persistent AF compared with only 6% of the patients with a HATCH score of 0. During follow-up, patients with AF progression were more often admitted to the hospital and had more major adverse cardiovascular events. Conclusions: A substantial number of patients progress to sustained AF within 1 year. The clinical outcome of these patients regarding hospital admissions and major adverse cardiovascular events was worse compared with patients demonstrating no AF progression. Factors known to cause atrial structural remodeling (age and underlying heart disease) were independent predictors of AF progression. The HATCH score may help to identify patients who are likely to progress to sustained forms of AF in the near future. \ua9 2010 American College of Cardiology Foundation
    • …
    corecore