316 research outputs found

    Experimental Diatom Dissolution and the Quantification of Microfossil Preservation in Sediments

    Get PDF
    Four laboratory experiments on fresh, modern diatoms collected from lakes in the Northern Great Plains of North America were carried out to assess the effects of dissolution on diatom abundance and composition. Marked differences in mean dissolution susceptibility exist between species, despite sometimes significant intra- specific variation between heterovalves. Twenty-four taxa were ranked according to susceptibility to dissolution using an exponential decay model of valve abundance. This dissolution ranking was used to derive two weighted indices of sample preservation. A third index (F) was based on a simple binary classification of valve morphology into dissolved and pristine categories, as distinguished by light microscopy (LM). When compared against rank indices and a measure of species diversity, this diatom dissolution index was found to be the best predictor of the progress of dissolution as estimated by total valve abundance or biogenic silica (BiSi) loss. Strong empirical relationships between F index values and diatom abundance (r2 = 0.84, n = 32) and BiSi (r2 = 0.89, n = 32) were developed and applied to a diatom sequence from a short core from Devils Lake, North Dakota, and compared to diatom-inferred and observed salinity at this site. The F index is a simple, effective diagnostic tool to assess important aspects of diatom preservation. The index can provide insight into Si cycling and record changes in conditions pertinent to diatom dissolution, and has a role in validation of transfer functions or other inferences derived from compositional data

    Biodiversity patterns of Arctic diatom assemblages in lakes and streams: Current reference conditions and historical context for biomonitoring

    Get PDF
    Comprehensive assessments of contemporary diatom distributions across the Arctic remain scarce. Furthermore, studies tracking species compositional differences across space and time, as well as diatom responses to climate warming, are mainly limited to paleolimnological studies due to a lack of routine monitoring in lakes and streams across vast areas of the Arctic. The study aims to provide a spatial assessment of contemporary species distributions across the circum-Arctic, establish contemporary biodiversity patterns of diatom assemblages to use as reference conditions for future biomonitoring assessments, and determine pre-industrial baseline conditions to provide historical context for modern diatom distributions. Diatom assemblages were assessed using information from ongoing regulatory monitoring programmes, individual research projects, and from surface sediment layers obtained from lake cores. Pre-industrial baseline conditions as well as the nature, direction and magnitude of changes in diatom assemblages over the pastc.200 years were determined by comparing surface sediment samples (i.e. containing modern assemblages) with a sediment interval deposited prior to the onset of significant anthropogenic activities (i.e. containing pre-1850 assemblages), together with an examination of diatoms preserved in contiguous samples from dated sediment cores. We identified several biotypes with distinct diatom assemblages using contemporary diatom data from both lakes and streams, including a biotype typical for High Arctic regions. Differences in diatom assemblage composition across circum-Arctic regions were gradual rather than abrupt. Species richness was lowest in High Arctic regions compared to Low Arctic and sub-Arctic regions, and higher in lakes than in streams. Dominant diatom taxa were not endemic to the Arctic. Species richness in both lakes and streams reached maximum values between 60 degrees N and 75 degrees N but was highly variable, probably reflecting differences in local and regional environmental factors and possibly sampling effort. We found clear taxon-specific differences between contemporary and pre-industrial samples that were often specific to both ecozone and lake depth. Regional patterns of species turnover (beta-diversity) in the pastc.200 years revealed that regions of the Canadian High Arctic and the Hudson Bay Lowlands to the south showed most compositional change, whereas the easternmost regions of the Canadian Arctic changed least. As shown in previous Arctic diatom studies, global warming has already affected these remote high latitude ecosystems. Our results provide reference conditions for future environmental monitoring programmes in the Arctic. Furthermore, diatom taxa identification and harmonisation require improvement, starting with circum-Arctic intercalibrations. Despite the challenges posed by the remoteness of the Arctic, our study shows the need for routine monitoring programmes that have a wide geographical coverage for both streams and lakes

    Using species attributes to characterize late-glacial and early-Holocene environments at KrÄkenes, western Norway

    Get PDF
    Aim: We aim to use species attributes such as distributions and indicator values to reconstruct past biomes, environment, and temperatures from detailed plant‐macrofossil data covering the late glacial to the early Holocene (ca. 14–9 ka). Location: KrĂ„kenes, western Norway. Methods: We applied attributes for present‐day geographical distribution, optimal July and January temperatures, and Ellenberg indicator values for plants in the macrofossil data‐set. We used assemblage weighted means (AWM) to reconstruct past biomes, changes in light (L), nitrogen (N), moisture (F), and soil reaction (R), and temperatures. We compared the temperature reconstructions with previous chironomid‐inferred temperatures. Results: After the start of the Holocene around 11.5 ka, the Arctic‐montane biome, which was stable during the late‐glacial period, shifted successively into the Boreo‐arctic montane, Wide‐boreal, Boreo‐montane, Boreo‐temperate, and Wide‐temperate biomes by ca. 9.0 ka. Circumpolar and Eurasian floristic elements characteristic of the late‐glacial decreased and the Eurosiberian element became prominent. Light demand (L), soil moisture (F), nitrogen (N), and soil reaction (R) show different, but complementary responses. Light‐demanding plants decreased with time. Soil moisture was relatively stable until it increased during organic soil development during the early Holocene. Soil nitrogen increased during the early Holocene. Soil reaction (pH) decreased during the AllerĂžd, but increased during the Younger Dryas. It decreased markedly after the start of the Holocene, reaching low but stable levels in the early Holocene. Mean July and January temperatures show similar patterns to the chironomid‐inferred mean July temperature trends at KrĂ„kenes, but chironomids show larger fluctuations and interesting differences in timing. Conclusion: Assigning attributes to macrofossil species is a useful new approach in palaeoecology. It can demonstrate changes in biomes, ecological conditions, and temperatures. The late‐glacial to early‐Holocene transition may form an analogue for changes observed in the modern arctic and in mountains, with melting glaciers, permafrost thaw, and shrub encroachment into tundra.publishedVersio

    Solar energetic particle transport near a heliospheric current sheet

    Get PDF
    Solar energetic particles (SEPs), a major component of space weather, propagate through the interplanetary medium strongly guided by the interplanetary magnetic field (IMF). In this work, we analyze the implications that a flat Heliospheric Current Sheet (HCS) has on proton propagation from SEP release sites to the Earth. We simulate proton propagation by integrating fully 3D trajectories near an analytically defined flat current sheet, collecting comprehensive statistics into histograms, fluence maps, and virtual observer time profiles within an energy range of 1–800 MeV. We show that protons experience significant current sheet drift to distant longitudes, causing time profiles to exhibit multiple components, which are a potential source of confusing interpretations of observations. We find that variation of the current sheet thickness within a realistic parameter range has little effect on particle propagation. We show that the IMF configuration strongly affects the deceleration of protons. We show that in our model, the presence of a flat equatorial HCS in the inner heliosphere limits the crossing of protons into the opposite hemisphere

    Prolonged interglacial warmth during the Last Glacial in northern Europe

    Get PDF
    Few fossil-based environmental and climate records in northern Europe are dated to Marine Isotope Stage (MIS) 5a around 80 ka BP. We here present multiple environmental and climate proxies obtained from a lake sequence of MIS 5a age in the Sokli basin (northern Finland). Pollen/spores, plant macrofossils, NPPs (e.g. green algae), bryozoa, diatoms and chironomids allowed an exceptionally detailed reconstruction of aquatic and telmatic ecosystem successions related to the development of the Sokli Ice Lake and subsequent infilling of a relatively small and shallow lake confined to the Sokli basin. A regional vegetation development typical for the early half of an interglacial is recorded by the pollen, stomata and plant macrofossil data. Reconstructions of July temperatures based on pollen assemblages suffer from a large contribution of local pollen from the lake's littoral zone. Summer temperatures reaching present-day values, inferred for the upper part of the lake sequence, however, agree with the establishment of pine-dominated boreal forest indicated by the plant fossil data. Habitat preferences also influence the climate record based on chironomids. Nevertheless, the climate optima of the predominant intermediate- to warm-water chironomid taxa suggest July temperatures exceeding present-day values by up to several degrees, in line with climate inferences from a variety of aquatic and wetland plant indicator species. The disequilibrium between regional vegetation development and warm, insolation-forced summers is also reported for Early Holocene records from northern Fennoscandia. The MIS 5a sequence is the last remaining fossil-bearing deposit in the late Quaternary basin infill at Sokli to be studied using multi-proxy evidence. A unique detailed climate record for MIS 5 is now available for formerly glaciated northern Europe. Our studies indicate that interglacial conditions persisted into MIS 5a, in agreement with data for large parts of the European mainland, shortening the Last Glacial by some 50 ka to MIS 4-2.Peer reviewe

    Biogeochemical responses to Holocene catchment-lake dynamics in the Tasmanian World Heritage Area, Australia

    Get PDF
    Environmental changes such as climate, land use, and fire activity affect terrestrial and aquatic ecosystems at multiple scales of space and time. Due to the nature of the interactions between terrestrial and aquatic dynamics, an integrated study using multiple proxies is critical for a better understanding of climate- and fire-driven impacts on environmental change. Here we present a synthesis of biological and geochemical data (pollen, spores, diatoms, micro X-ray fluorescence scanning, CN content, and stable isotopes) from Dove Lake, Tasmania, allowing us to disentangle long-term terrestrial-aquatic dynamics through the last 12 kyear. We found that aquatic dynamics at Dove Lake are tightly linked to vegetation shifts dictated by regional hydroclimatic variability in western Tasmania. A major shift in the diatom composition was detected at ca. 6 ka, and it was likely mediated by changes in regional terrestrial vegetation, charcoal, and iron accumulation. High rainforest abundance prior ca. 6 ka is linked to increased terrestrially derived organic matter delivery into the lake, higher dystrophy, anoxic bottom conditions, and lower light penetration depths. The shift to a landscape with a higher proportion of sclerophyll species following the intensification of El Niño-Southern Oscillation since ca. 6 ka corresponds to a decline in terrestrial organic matter input into Dove Lake, lower dystrophy levels, higher oxygen availability, and higher light availability for algae and littoral macrophytes. This record provides new insights on terrestrial-aquatic dynamics that could contribute to the conservation management plans in the Tasmanian World Heritage Area and in temperate high-altitude dystrophic systems elsewhere

    Diel surface temperature range scales with lake size

    Get PDF
    Ecological and biogeochemical processes in lakes are strongly dependent upon water temperature. Long-term surface warming of many lakes is unequivocal, but little is known about the comparative magnitude of temperature variation at Diel timescales, due to a lack of appropriately resolved data. Here we quantify the pattern and magnitude of Diel temperature variability of surface waters using high-frequency data from 100 lakes. We show that the near-surface Diel temperature range can be substantial in summer relative to long-term change and, for lakes smaller than 3 km2, increases sharply and predictably with decreasing lake area. Most small lakes included in this study experience average summer Diel ranges in their near-surface temperatures of between 4 and 7°C. Large Diel temperature fluctuations in the majority of lakes undoubtedly influence their structure, function and role in biogeochemical cycles, but the full implications remain largely unexplored
    • 

    corecore