25 research outputs found

    A novel statistical signal processing method to estimate effects of compounds on contractility of cardiomyocytes using impedance assays

    Get PDF
    International audienceLabel free methods such as cell impedance assays are in vitro tests increasingly used in drug development and producing large and high-content data files. Since the current commercial software are not suited for fully automated analysis , there is a need to develop validated and rapid solutions to extract relevant information for biologists. This need is particularly obvious in the case of impedance signals analysis from cardiomyocytes. The proposed solution is based on three main steps. The first one consists in calculating five indices informing about the time variations of frequency (F), amplitude (A), shape (S) of beatings, trends (T) of the cardiomyocyte dependent on spreading, viability and attachment as well as irregularity (I) of the contractility. In a second phase, two summary statistics are proposed to test the concentration effect of drugs on the five FASTI indices. Results of the statistical tests are finally aggregated in a cardio-effect grade to compare the tested molecules in a cardio-impact scale graduated from 0 (no influence) to 10 (highly disturbed effects in cardiomy-ocytes). This innovative approach was tested using in vitro data obtained from cell impedance analysis of three known molecules (2 cardiotoxic and 1 non-cardiotoxic compounds). Results have clearly shown the ability of the proposed approach to identify significant effects on the contractility of cardiomyocytes. This solution speeds up the analysis of cardiomyocyte impedance data, takes into account all the kinetic data generated and is now available for biologists on a web-platform: i-Cardio TM developed by CYBERnano TM

    Diagrammes de puissance restreint sur le GPU

    Get PDF
    International audienceWe propose a method to simultaneously decompose a 3D object into power diagram cells and to integrate given functions in each of the obtained simple regions. We offer a novel, highly parallel algorithm that lends itself to an efficient GPU implementation. It is optimized for algorithms that need to compute many decompositions, for instance, centroidal Voronoi tesselation algorithms and incompressible fluid dynamics simulations. We propose an efficient solution that directly evaluates the integrals over every cell without computing the power diagram explicitly and without intersecting it with a tetrahedralization of the domain. Most computations are performed on the fly, without storing the power diagram. We manipulate a triangulation of the boundary of the domain (instead of tetrahedralizing the domain) to speed up the process. Moreover, the cells are treated independently one from another, making it possible to trivially scale up on a parallel architecture. Despite recent Voronoi diagram generation methods optimized for the GPU, computing integrals over restricted power diagrams still poses significant challenges; the restriction to a complex simulation domain is difficult and likely to be slow. It is not trivial to determine when a cell of a power diagram is completely computed, and the resulting integrals (e.g. the weighted Laplacian operator matrix) do not fit into fast (shared) GPU memory. We address all these issues and boost the performance of the state-of-the-art algorithms by a factor 2 to 3 for (unrestricted) Voronoi diagrams and a ×50 speed-up with respect to CPU implementations for restricted power diagrams. An essential ingredient to achieve this is our new scheduling strategy that allows us to treat each Voronoi/power diagram cell with optimal settings and to benefit from the fast memory

    The Giant Radio Array for Neutrino Detection (GRAND) Project

    Get PDF
    The GRAND project aims to detect ultra-high-energy neutrinos, cosmic rays and gamma rays, with an array of 200,000 radio antennas over 200,000km2^2, split into ∌20 sub-arrays of ∌10,000km2^2 deployed worldwide. The strategy of GRAND is to detect air showers above 1017^{17}eV that are induced by the interaction of ultra-high-energy particles in the atmosphere or in the Earth crust, through its associated coherent radio-emission in the 50−200MHz range. In its final configuration, GRAND plans to reach a neutrino-sensitivity of ∌10−10^{−10}GeV cm−2^{−2}s−1^{−1}sr−1^{−1} above 5×1017^{17}eV combined with a sub-degree angular resolution. GRANDProto300, the 300-antenna pathfinder array, is planned to start data-taking in 2021. It aims at demonstrating autonomous radio detection of inclined air-showers, and study cosmic rays around the transition between Galactic and extra-Galactic sources. We present preliminary designs and simulation results, plans for the ongoing, staged approach to construction, and the rich research program made possible by the proposed sensitivity and angular resolution

    The Giant Radio Array for Neutrino Detection (GRAND) Project

    Get PDF
    The GRAND project aims to detect ultra-high-energy neutrinos, cosmic rays and gamma rays, with an array of 200,000 radio antennas over 200,000km2^2, split into ∌20 sub-arrays of ∌10,000km2^2 deployed worldwide. The strategy of GRAND is to detect air showers above 1017^{17}\,eV that are induced by the interaction of ultra-high-energy particles in the atmosphere or in the Earth crust, through its associated coherent radio-emission in the 50−200\,MHz range. In its final configuration, GRAND plans to reach a neutrino-sensitivity of ∌10−10^{−10}GeVcm−2^{−2}s−1^{−1}sr−1^{−1} above 5×1017^{17}\,eV combined with a sub-degree angular resolution. GRANDProto300, the 300-antenna pathfinder array, is planned to start data-taking in 2021. It aims at demonstrating autonomous radio detection of inclined air-showers, and study cosmic rays around the transition between Galactic and extra-Galactic sources. We present preliminary designs and simulation results, plans for the ongoing, staged approach to construction, and the rich research program made possible by the proposed sensitivity and angular resolution

    Self-trigger radio prototype array for GRAND

    Get PDF
    The GRANDProto300 (GP300) array is a pathfinder for the Giant Radio Array for Neutrino Detection (GRAND) project. The deployment of the array, consisting of 300 antennas, will start in 2021 in a radio-quiet area of ~200 km2 near Lenghu (~3000 m a.s.l.) in China. Serving as a test bench, the GP300 array is expected to pioneer techniques of autonomous radio detection including identification and reconstruction of nearly horizontal cosmic-ray (CR) air showers. In addition, the GP300 array is at a privileged position to study the transition between Galactic and extragalactic origins of cosmic rays, due to its large effective area and the precise measurements of both energy and mass composition for CRs with energies ranging from 30 PeV to 1 EeV. Using the GP300 array we will also investigate the potential sensitivity for radio transients such as Giant Radio Pulses and Fast Radio Bursts in the 50-200 MHz range

    Unmasking Leprosy: An Unusual Immune Reconstitution Inflammatory Syndrome in a Patient Infected with Human Immunodeficiency Virus

    No full text
    Immune reconstitution inflammatory syndrome (IRIS) has become a frequent and potentially severe complication after initiation of following antiretroviral therapy (ART) in patients infected with human immunodeficiency virus (HIV). IRIS can unmask a previously clinically silent infection, such as tuberculosis, as recently described for Mycobacterium infections. We describe a case in a patient from CĂŽte d'Ivoire living in France in whom skin papular lesions developed after initiation of ART. These lesions were associated with microbiologically proven leprosy. Thus, latent leprosy can appear as IRIS, and leprosy-associated IRIS should be considered in HIV-infected patients from areas endemic for leprosy
    corecore