255 research outputs found

    Expression and trans-specific polymorphism of self-incompatibility RNases in Coffea (Rubiaceae)

    Get PDF
    Self-incompatibility (SI) is widespread in the angiosperms, but identifying the biochemical components of SI mechanisms has proven to be difficult in most lineages. Coffea (coffee; Rubiaceae) is a genus of old-world tropical understory trees in which the vast majority of diploid species utilize a mechanism of gametophytic self-incompatibility (GSI). The S-RNase GSI system was one of the first SI mechanisms to be biochemically characterized, and likely represents the ancestral Eudicot condition as evidenced by its functional characterization in both asterid (Solanaceae, Plantaginaceae) and rosid (Rosaceae) lineages. The S-RNase GSI mechanism employs the activity of class III RNase T2 proteins to terminate the growth of "self" pollen tubes. Here, we investigate the mechanism of Coffea GSI and specifically examine the potential for homology to S-RNase GSI by sequencing class III RNase T2 genes in populations of 14 African and Madagascan Coffea species and the closely related self-compatible species Psilanthus ebracteolatus. Phylogenetic analyses of these sequences aligned to a diverse sample of plant RNase T2 genes show that the Coffea genome contains at least three class III RNase T2 genes. Patterns of tissue-specific gene expression identify one of these RNase T2 genes as the putative Coffea S-RNase gene. We show that populations of SI Coffea are remarkably polymorphic for putative S-RNase alleles, and exhibit a persistent pattern of trans-specific polymorphism characteristic of all S-RNase genes previously isolated from GSI Eudicot lineages. We thus conclude that Coffea GSI is most likely homologous to the classic Eudicot S-RNase system, which was retained since the divergence of the Rubiaceae lineage from an ancient SI Eudicot ancestor, nearly 90 million years ago.United States National Science Foundation [0849186]; Society of Systematic Biologists; American Society of Plant Taxonomists; Duke University Graduate Schoolinfo:eu-repo/semantics/publishedVersio

    Validity of willingness to pay measures under preference uncertainty

    Get PDF
    This paper is part of the project ACCEPT, which is funded by the German Federal Ministry for Education and Research (grant number 01LA1112A). The publication of this article was funded by the Open Access fund of the Leibniz Association. All data is available on the project homepage (https://www.ifw-kiel.de/forschung/umwelt/projekte/accept) and from Figshare (https://dx.doi.org/10.6084/m9.figshare.3113050.v1).Recent studies in the marketing literature developed a new method for eliciting willingness to pay (WTP) with an open-ended elicitation format: the Range-WTP method. In contrast to the traditional approach of eliciting WTP as a single value (Point-WTP), Range-WTP explicitly allows for preference uncertainty in responses. The aim of this paper is to apply Range-WTP to the domain of contingent valuation and to test for its theoretical validity and robustness in comparison to the Point-WTP. Using data from two novel large-scale surveys on the perception of solar radiation management (SRM), a little-known technique for counteracting climate change, we compare the performance of both methods in the field. In addition to the theoretical validity (i.e. the degree to which WTP values are consistent with theoretical expectations), we analyse the test-retest reliability and stability of our results over time. Our evidence suggests that the Range-WTP method clearly outperforms the Point-WTP method.Publisher PDFPeer reviewe

    Calculating Marginal and Non-marginal Welfare Measures

    Get PDF
    AbstractThis chapter focuses on the calculation of marginal and non-marginal welfare measures. It outlines how the calculation of welfare measures is related to the specified model and the assumptions underlying that model. It further describes how the calculation of these measures is affected by the inclusion of preference heterogeneity, including the incorporation of interaction terms to capture observed preference heterogeneity or random parameters to capture unobserved preference heterogeneity. Finally, it discusses how these measures can be aggregated and compared

    The Characterisation of Three Types of Genes that Overlie Copy Number Variable Regions

    Get PDF
    Background: Due to the increased accuracy of Copy Number Variable region (CNV) break point mapping, it is now possible to say with a reasonable degree of confidence whether a gene (i) falls entirely within a CNV; (ii) overlaps the CNV or (iii) actually contains the CNV. We classify these as type I, II and III CNV genes respectively. Principal Findings: Here we show that although type I genes vary in copy number along with the CNV, most of these type I genes have the same expression levels as wild type copy numbers of the gene. These genes must, therefore, be under homeostatic dosage compensation control. Looking into possible mechanisms for the regulation of gene expression we found that type I genes have a significant paucity of genes regulated by miRNAs and are not significantly enriched for monoallelically expressed genes. Type III genes, on the other hand, have a significant excess of genes regulated by miRNAs and are enriched for genes that are monoallelically expressed. Significance: Many diseases and genomic disorders are associated with CNVs so a better understanding of the different ways genes are associated with normal CNVs will help focus on candidate genes in genome wide association studies

    Exposure to Non-Steroidal Anti-Inflammatory Drugs during Pregnancy and the Risk of Selected Birth Defects: A Prospective Cohort Study

    Get PDF
    Contains fulltext : 97906.pdf (publisher's version ) (Open Access)BACKGROUND: Since use of non-steroidal anti-inflammatory drugs (NSAIDs) during pregnancy is common, small increases in the risk of birth defects may have significant implications for public health. Results of human studies on the teratogenic risks of NSAIDs are inconsistent. Therefore, we evaluated the risk of selected birth defects after prenatal exposure to prescribed and over-the-counter NSAIDs. METHODS AND FINDINGS: We used data on 69,929 women enrolled in the Norwegian Mother and Child Cohort Study between 1999 and 2006. Data on NSAID exposure were available from a self-administered questionnaire completed around gestational week 17. Information on pregnancy outcome was obtained from the Medical Birth Registry of Norway. Only birth defects suspected to be associated with NSAID exposure based upon proposed teratogenic mechanisms and previous studies were included in the multivariable logistic regression analyses. A total of 3,023 women used NSAIDs in gestational weeks 0-12 and 64,074 women did not report NSAID use in early pregnancy. No associations were observed between overall exposure to NSAIDs during pregnancy and the selected birth defects separately or as a group (adjusted odds ratio 0.7, 95% confidence interval 0.4-1.1). Associations between maternal use of specific types of NSAIDs and the selected birth defects were not found either, although an increased risk was seen for septal defects and exposure to multiple NSAIDs based on small numbers (2 exposed cases; crude odds ratio 3.9, 95% confidence interval 0.9-15.7). CONCLUSIONS: Exposure to NSAIDs during the first 12 weeks of gestation does not seem to be associated with an increased risk of the selected birth defects. However, due to the small numbers of NSAID-exposed infants for the individual birth defect categories, increases in the risks of specific birth defects could not be excluded

    Venous hemodynamics in neurological disorders: an analytical review with hydrodynamic analysis.

    Get PDF
    Venous abnormalities contribute to the pathophysiology of several neurological conditions. This paper reviews the literature regarding venous abnormalities in multiple sclerosis (MS), leukoaraiosis, and normal-pressure hydrocephalus (NPH). The review is supplemented with hydrodynamic analysis to assess the effects on cerebrospinal fluid (CSF) dynamics and cerebral blood flow (CBF) of venous hypertension in general, and chronic cerebrospinal venous insufficiency (CCSVI) in particular.CCSVI-like venous anomalies seem unlikely to account for reduced CBF in patients with MS, thus other mechanisms must be at work, which increase the hydraulic resistance of the cerebral vascular bed in MS. Similarly, hydrodynamic changes appear to be responsible for reduced CBF in leukoaraiosis. The hydrodynamic properties of the periventricular veins make these vessels particularly vulnerable to ischemia and plaque formation.Venous hypertension in the dural sinuses can alter intracranial compliance. Consequently, venous hypertension may change the CSF dynamics, affecting the intracranial windkessel mechanism. MS and NPH appear to share some similar characteristics, with both conditions exhibiting increased CSF pulsatility in the aqueduct of Sylvius.CCSVI appears to be a real phenomenon associated with MS, which causes venous hypertension in the dural sinuses. However, the role of CCSVI in the pathophysiology of MS remains unclear

    Microcirculatory alterations: potential mechanisms and implications for therapy

    Get PDF
    Multiple experimental and human trials have shown that microcirculatory alterations are frequent in sepsis. In this review, we discuss the characteristics of these alterations, the various mechanisms potentially involved, and the implications for therapy. Sepsis-induced microvascular alterations are characterized by a decrease in capillary density with an increased number of stopped-flow and intermittent-flow capillaries, in close vicinity to well-perfused capillaries. Accordingly, the surface available for exchange is decreased but also is highly heterogeneous. Multiple mechanisms may contribute to these alterations, including endothelial dysfunction, impaired inter-cell communication, altered glycocalyx, adhesion and rolling of white blood cells and platelets, and altered red blood cell deformability. Given the heterogeneous nature of these alterations and the mechanisms potentially involved, classical hemodynamic interventions, such as fluids, red blood cell transfusions, vasopressors, and inotropic agents, have only a limited impact, and the microcirculatory changes often persist after resuscitation. Nevertheless, fluids seem to improve the microcirculation in the early phase of sepsis and dobutamine also can improve the microcirculation, although the magnitude of this effect varies considerably among patients. Finally, maintaining a sufficient perfusion pressure seems to positively influence the microcirculation; however, which mean arterial pressure levels should be targeted remains controversial. Some trials using vasodilating agents, especially nitroglycerin, showed promising initial results but they were challenged in other trials, so it is difficult to recommend the use of these agents in current practice. Other agents can markedly improve the microcirculation, including activated protein C and antithrombin, vitamin C, or steroids. In conclusion, microcirculatory alterations may play an important role in the development of sepsis-related organ dysfunction. At this stage, therapies to target microcirculation specifically are still being investigated

    Mechanism of Neuronal versus Endothelial Cell Uptake of Alzheimer's Disease Amyloid β Protein

    Get PDF
    Alzheimer's disease (AD) is characterized by significant neurodegeneration in the cortex and hippocampus; intraneuronal tangles of hyperphosphorylated tau protein; and accumulation of β-amyloid (Aβ) proteins 40 and 42 in the brain parenchyma as well as in the cerebral vasculature. The current understanding that AD is initiated by the neuronal accumulation of Aβ proteins due to their inefficient clearance at the blood-brain-barrier (BBB), places the neurovascular unit at the epicenter of AD pathophysiology. The objective of this study is to investigate cellular mechanisms mediating the internalization of Aβ proteins in the principle constituents of the neurovascular unit, neurons and BBB endothelial cells. Laser confocal micrographs of wild type (WT) mouse brain slices treated with fluorescein labeled Aβ40 (F-Aβ40) demonstrated selective accumulation of the protein in a subpopulation of cortical and hippocampal neurons via nonsaturable, energy independent, and nonendocytotic pathways. This groundbreaking finding, which challenges the conventional belief that Aβ proteins are internalized by neurons via receptor mediated endocytosis, was verified in differentiated PC12 cells and rat primary hippocampal (RPH) neurons through laser confocal microscopy and flow cytometry studies. Microscopy studies have demonstrated that a significant proportion of F-Aβ40 or F-Aβ42 internalized by differentiated PC12 cells or RPH neurons is located outside of the endosomal or lysosomal compartments, which may accumulate without degradation. In contrast, BBME cells exhibit energy dependent uptake of F-Aβ40, and accumulate the protein in acidic cell organelle, indicative of endocytotic uptake. Such a phenomenal difference in the internalization of Aβ40 between neurons and BBB endothelial cells may provide essential clues to understanding how various cells can differentially regulate Aβ proteins and help explain the vulnerability of cortical and hippocampal neurons to Aβ toxicity
    corecore