6 research outputs found

    Pharmacologic inhibition of RGD-binding integrins ameliorates fibrosis and improves function following kidney injury

    Get PDF
    Fibrosis is a final common pathway for many causes of progressive chronic kidney disease (CKD). Arginine-glycine-aspartic acid (RGD)-binding integrins are important mediators of the pro-fibrotic response by activating latent TGF-β at sites of injury and by providing myofibroblasts information about the composition and stiffness of the extracellular matrix. Therefore, blockade of RGD-binding integrins may have therapeutic potential for CKD. To test this idea, we used small-molecule peptidomimetics that potently inhibit a subset of RGD-binding integrins in a murine model of kidney fibrosis. Acute kidney injury leading to fibrosis was induced by administration of aristolochic acid. Continuous subcutaneous administration of CWHM-12, an RGD integrin antagonist, for 28 days improved kidney function as measured by serum creatinine. CWHM-12 significantly reduced Collagen 1 (Col1a1) mRNA expression and scar collagen deposition in the kidney. Protein and gene expression markers of activated myofibroblasts, a major source of extracellular matrix deposition in kidney fibrosis, were diminished by treatment. RNA sequencing revealed that inhibition of RGD integrins influenced multiple pathways that determine the outcome of the response to injury and of repair processes. A second RGD integrin antagonist, CWHM-680, administered once daily by oral gavage was also effective in ameliorating fibrosis. We conclude that targeting RGD integrins with such small-molecule antagonists is a promising therapeutic approach in fibrotic kidney disease

    Disparate levels of beta-catenin activity determine nephron progenitor cell fate.

    No full text
    Formation of a functional kidney depends on the balance between renewal and differentiation of nephron progenitors. Failure to sustain this balance can lead to kidney failure or stem cell tumors. For nearly 60 years, we have known that signals from an epithelial structure known as the ureteric bud were essential for maintaining this balance. More recently it was discovered that one molecule, Wnt9b, was necessary for both renewal and differentiation of the nephron progenitor cells. How one ligand signaling through one transcription factor promoted two seemingly contradictory cellular processes was unclear. In this study, we show that Wnt9b/beta-catenin signaling alone is sufficient to promote both renewal and differentiation. Moreover, we show that discrete levels of beta-catenin can promote these two disparate fates, with low levels fostering progenitor renewal and high levels driving differentiation. These results provide insight into how Wnt9b regulates distinct target genes that balance nephron progenitor renewal and differentiation

    The chromatin landscape of healthy and injured cell types in the human kidney

    No full text
    Abstract There is a need to define regions of gene activation or repression that control human kidney cells in states of health, injury, and repair to understand the molecular pathogenesis of kidney disease and design therapeutic strategies. Comprehensive integration of gene expression with epigenetic features that define regulatory elements remains a significant challenge. We measure dual single nucleus RNA expression and chromatin accessibility, DNA methylation, and H3K27ac, H3K4me1, H3K4me3, and H3K27me3 histone modifications to decipher the chromatin landscape and gene regulation of the kidney in reference and adaptive injury states. We establish a spatially-anchored epigenomic atlas to define the kidney’s active, silent, and regulatory accessible chromatin regions across the genome. Using this atlas, we note distinct control of adaptive injury in different epithelial cell types. A proximal tubule cell transcription factor network of ELF3, KLF6, and KLF10 regulates the transition between health and injury, while in thick ascending limb cells this transition is regulated by NR2F1. Further, combined perturbation of ELF3, KLF6, and KLF10 distinguishes two adaptive proximal tubular cell subtypes, one of which manifested a repair trajectory after knockout. This atlas will serve as a foundation to facilitate targeted cell-specific therapeutics by reprogramming gene regulatory networks
    corecore