537 research outputs found

    Recent advances in understanding Candida albicans hyphal growth

    Get PDF
    International audienceMorphological changes are critical for the virulence of a range of plant and human fungal pathogens. is a major human fungal Candida albicans pathogen whose ability to switch between different morphological states is associated with its adaptability and pathogenicity. In particular, C. albicans can switch from an oval yeast form to a filamentous hyphal form, which is characteristic of filamentous fungi. What mechanisms underlie hyphal growth and how are they affected by environmental stimuli from the host or resident microbiota? These questions are the focus of intensive research, as understanding hyphal growth has broad implications for cell C. albicans biological and medical research

    Identification, functional expression and chromosomal localisation of a sustained human proton-gated cation channel

    Get PDF
    AbstractNon-inactivating or slowly inactivating proton-gated cation channels are thought to play an important role in the perception of pain that accompanies tissue acidosis. We have identified a novel human proton-gated cation channel subunit that has biphasic desensitisation kinetics with both a rapidly inactivating Na+-selective and a sustained component. The protein shares 84% sequence identity with the proton-gated cation channel rASIC3 (rDRASIC) from rat sensory neurones. The biphasic desensitisation kinetics and the sequence homology suggest that this novel clone (hASIC3) is the human orthologue of rASIC3 (rDRASIC). While rASIC3 (rDRASIC) requires very acidic pH (pH < 4.5) for activation of the sustained current, the non-inactivating hASIC3 current starts to be activated when the pH decreases to below pH 6. hASIC3 is an acid sensor and might play an important role in the detection of lasting pH changes in human. We localised the hASIC3 gene to the human chromosome 7q35, 6.4 cRad telomeric from the microsatellite AFMA082XC9

    Stem cell characteristics of human trabecular bone-derived cells

    Get PDF
    Human trabecular bone-derived cells (HTBs) have been used for many years as osteoblast progenitors. In this study we tested whether HTBs have stem cell characteristics; that is, whether they are pluripotent and able to self-renew. We show that HTBs readily differentiate into osteoblasts, chondrocytes, and adipocytes if subjected to the appropriate differentiating conditions. Importantly, differentiation into these three lineages is maintained in single cell clones derived by limiting dilution, following expansion over more than 20 cumulative population doublings. We conclude that cultures of HTBs are equivalent to cultures of "mesenchymal stem cells" (MSCs) isolated from bone marrow. © 2002 by Elsevier Science Inc. All rights reserved

    Phosphatidylinositol-4-phosphate-dependent membrane traffic is critical for fungal filamentous growth

    Get PDF
    International audienceThe phospholipid phosphatidylinositol-4-phosphate [PI(4)P], generated at the Golgi and plasma membrane, has been implicated in many processes, including membrane traffic, yet its role in cell morphology changes, such as the budding to filamentous growth transition, is unknown. We show that Golgi PI(4)P is required for such a transition in the human pathogenic fungus Candida albicans. Quantitative analyses of membrane traffic revealed that PI(4)P is required for late Golgi and secretory vesicle dynamics and targeting and, as a result, is important for the distribution of a multidrug transporter and hence sensitivity to antifungal drugs. We also observed that plasma membrane PI(4)P, which we show is functionally distinct from Golgi PI(4)P, forms a steep gradient concomitant with filamentous growth, despite uniform plasma membrane PI-4-kinase distribution. Mathematical modeling indicates that local PI(4)P generation and hydrolysis by phosphatases are crucial for this gradient. We conclude that PI(4)P-regulated membrane dynamics are critical for morphology changes. membrane traffic | filamentous growth | polarity | morphogenesis

    On-site secretory vesicle delivery drives filamentous growth in the fungal pathogen Candida albicans

    Get PDF
    International audienceCandida albicans is an opportunistic fungal pathogen that colonises the skin as well as genital and intestinal mucosa of most healthy individuals. The ability of C. albicans to switch between different morphological states, for example, from an ellipsoid yeast form to a highly polarised, hyphal form, contributes to its success as a pathogen. In highly polarised tip-growing cells such as neurons, pollen tubes, and filamentous fungi, delivery of membrane and cargo to the filament apex is achieved by long-range delivery of secretory vesicles tethered to motors moving along cytoskeletal cables that extend towards the growing tip. To investigate whether such a mechanism is also critical for C. albicans filamentous growth, we studied the dynamics and organisation of the C. albicans secretory pathway using live cell imaging and three-dimensional electron microscopy. We demonstrate that the secretory pathway is organised in distinct domains, including endoplasmic reticulum membrane sheets that extend along the length of the hyphal filament, a sub-apical zone exhibiting distinct membrane structures and dynamics and a Spitzenkörper comprised of uniformly sized secretory vesicles. Our results indicate that the organisation of the secretory pathway in C. albicans likely facilitates short-range "on-site" secretory vesicle delivery, in contrast to filamentous fungi and many highly polarised cells

    Regulation of polarised growth in fungi

    Get PDF
    Polarised growth in fungi occurs through the delivery of secretory vesicles along tracks formed by cytoskeletal elements to specific sites on the cell surface where they dock with a multiprotein structure called the exocyst before fusing with the plasmamembrane. The budding yeast, Saccharomyces cerevisiae has provided a useful model to investigate the mechanisms involved and their control. Cortical markers, provided by bud site selection pathways during budding, the septin ring during cytokinesis or the stimulation of the pheromone response receptors during mating, act through upstream signalling pathways to localise Cdc24, the GEF for the rho family GTPase, Cdc42. Cdc42 in its GTP-bound activates a multiprotein protein complex called the polarisome which nucleates actin cables along which the secretory vesicles are transported to the cell surface. Hyphae can elongate at a rate orders of magnitude faster than the extension of a yeast bud, so understanding hyphal growth will require substantial modification of the yeast paradigm. The rapid rate of hyphal growth is driven by a structure called the Spitzenkörper, located just behind the growing tip and which is rich in secretory vesicles. It is thought that secretory vesicles are delivered to the apical region where they accumulate in the Spitzenkörper. The Spitzenkörper then acts as vesicle supply centre in which vesicles exit the Spitzenkörper in all directions, but because of its proximity, the tip receives a greater concentration of vesicles per unit area than subapical regions. There are no obvious equivalents to the bud site selection pathway to provide a spatial landmark for polarised growth in hyphae. However, an emerging model is the way that the site of polarised growth in the fission yeast, Schizosaccharomyces pombe, is marked by delivery of the kelch repeat protein, Tea1, along microtubules. The relationship of the Spitzenkörper to the polarisome and the mechanisms that promote its formation are key questions that form the focus of current research

    Purification and Reconstitution of the Glutamate Carrier GltT of the Thermophilic Bacterium Bacillus stearothermophilus

    Get PDF
    An affinity tag consisting of six adjacent histidine residues followed by an enterokinase cleavage site was genetically engineered at the N-terminus of the glutamate transport protein GltT of the thermophilic bacterium Bacillus stearothermophilus. The fusion protein was expressed in Escherichia coli and shown to transport glutamate. The highest levels of expression were observed in E. coli strain DH5α grown on rich medium. The protein could be purified in a single step by Ni2+-NTA affinity chromatography after solubilization of the cytoplasmic membranes with the detergent Triton X100. Purified GltT was reconstituted in an active state in liposomes prepared from E. coli phospholipids. The protein was reconstituted in detergent-treated preformed liposomes, followed by removal of the detergent with polystyrene beads. Active reconstitution was realized with a wide range of Triton X100 concentrations. Neither the presence of glycerol, phospholipids, nor substrates of the transporter was necessary during the purification and reconstitution procedure to keep the enzyme in an active state. In B. stearothermophilus, GltT translocates glutamate in symport with protons or sodium ions. In membrane vesicles derived from E. coli cells expressing GltT, the Na+ ion dependency seems to be lost, suggesting a role for the lipid environment in the cation specificity. In agreement with the last observation, glutamate transport catalyzed by purified GltT reconstituted in E. coli phospholipid is driven by an electrochemical gradient of H+ but not of Na+.

    Plasma Membrane Phosphatidylinositol-4-Phosphate Is Not Necessary for Candida albicans Viability yet Is Key for Cell Wall Integrity and Systemic Infection

    Get PDF
    Phosphatidylinositol phosphates are key phospholipids with a range of regulatory roles, including membrane trafficking and cell polarity. Phosphatidylinositol-4-phosphate [PI(4)P] at the Golgi apparatus is required for the budding-to-filamentous-growth transition in the human-pathogenic fungus Candida albicans; however, the role of plasma membrane PI(4)P is unclear. We have investigated the importance of this phospholipid in C. albicans growth, stress response, and virulence by generating mutant strains with decreased levels of plasma membrane PI(4)P, via deletion of components of the PI-4-kinase complex, i.e., Efr3, Ypp1, and Stt4. The amounts of plasma membrane PI(4)P in the efr3Δ/Δ and ypp1Δ/Δ mutants were ∌60% and ∌40%, respectively, of that in the wild-type strain, whereas it was nearly undetectable in the stt4Δ/Δ mutant. All three mutants had reduced plas7ma membrane phosphatidylserine (PS). Although these mutants had normal yeast-phase growth, they were defective in filamentous growth, exhibited defects in cell wall integrity, and had an increased exposure of cell wall ÎČ(1,3)-glucan, yet they induced a range of hyphal-specific genes. In a mouse model of hematogenously disseminated candidiasis, fungal plasma membrane PI(4)P levels directly correlated with virulence; the efr3Δ/Δ mutant had wild-type virulence, the ypp1Δ/Δ mutant had attenuated virulence, and the stt4Δ/Δ mutant caused no lethality. In the mouse model of oropharyngeal candidiasis, only the ypp1Δ/Δ mutant had reduced virulence, indicating that plasma membrane PI(4)P is less important for proliferation in the oropharynx. Collectively, these results demonstrate that plasma membrane PI(4)P levels play a central role in filamentation, cell wall integrity, and virulence in C. albicans. Importance: While the PI-4-kinases Pik1 and Stt4 both produce PI(4)P, the former generates PI(4)P at the Golgi apparatus and the latter at the plasma membrane, and these two pools are functionally distinct. To address the importance of plasma membrane PI(4)P in Candida albicans, we generated deletion mutants of the three putative plasma membrane PI-4-kinase complex components and quantified the levels of plasma membrane PI(4)P in each of these strains. Our work reveals that this phosphatidylinositol phosphate is specifically critical for the yeast-to-hyphal transition, cell wall integrity, and virulence in a mouse systemic infection model. The significance of this work is in identifying a plasma membrane phospholipid that has an infection-specific role, which is attributed to the loss of plasma membrane PI(4)P resulting in ÎČ(1,3)-glucan unmasking.This work was supported by the CNRS, INSERM, UniversitĂ© CĂŽte d’Azur, and ANR (ANR-11-LABX-0028-01, ANR-16-CE13-0010-01, and ANR-19-CE13-0004-01) grants, by grant R01DE026600 from the U.S. NIH, and grant SAF2017-86192 from the Spanish Ministry for Science and Innovation. R.G.-R. is a Prestige and Marie Curie Postdoctoral Fellow (funded in part by a PCOFUND- GA-2013-609102 coordinated by Campus France).S

    Rac1 Dynamics in the Human Opportunistic Fungal Pathogen Candida albicans

    Get PDF
    The small Rho G-protein Rac1 is highly conserved from fungi to humans, with approximately 65% overall sequence identity in Candida albicans. As observed with human Rac1, we show that C. albicans Rac1 can accumulate in the nucleus, and fluorescence recovery after photobleaching (FRAP) together with fluorescence loss in photobleaching (FLIP) studies indicate that this Rho G-protein undergoes nucleo-cytoplasmic shuttling. Analyses of different chimeras revealed that nuclear accumulation of C. albicans Rac1 requires the NLS-motifs at its carboxyl-terminus, which are blocked by prenylation of the adjacent cysteine residue. Furthermore, we show that C. albicans Rac1 dynamics, both at the plasma membrane and in the nucleus, are dependent on its activation state and in particular that the inactive form accumulates faster in the nucleus. Heterologous expression of human Rac1 in C. albicans also results in nuclear accumulation, yet accumulation is more rapid than that of C. albicans Rac1. Taken together our results indicate that Rac1 nuclear accumulation is an inherent property of this G-protein and suggest that the requirements for its nucleo-cytoplasmic shuttling are conserved from fungi to humans

    A Potent and Selective S1P1 Antagonist with Efficacy in Experimental Autoimmune Encephalomyelitis

    Get PDF
    SummaryLymphocyte trafficking is critically regulated by the Sphingosine 1-phosphate receptor-1 (S1P1), a G protein-coupled receptor that has been highlighted as a promising therapeutic target in autoimmunity. Fingolimod (FTY720, Gilenya) is a S1P1 receptor agonist that has recently been approved for the treatment of multiple sclerosis (MS). Here, we report the discovery of NIBR-0213, a potent and selective S1P1 antagonist that induces long-lasting reduction of peripheral blood lymphocyte counts after oral dosing. NIBR-0213 showed comparable therapeutic efficacy to fingolimod in experimental autoimmune encephalomyelitis (EAE), a model of human MS. These data provide convincing evidence that S1P1 antagonists are effective in EAE. In addition, the profile of NIBR-0213 makes it an attractive candidate to further study the consequences of S1P1 receptor antagonism and to differentiate the effects from those of S1P1 agonists
    • 

    corecore