49 research outputs found
A European Database of Fusarium graminearum and F-culmorum Trichothecene Genotypes
Fusarium species, particularly Fusarium graminearum and F culmorum, are the main cause of trichothecene type B contamination in cereals. Data on the distribution of Fusarium trichothecene genotypes in cereals in Europe are scattered in time and space. Furthermore, a common core set of related variables (sampling method, host cultivar, previous crop, etc.) that would allow more effective analysis of factors influencing the spatial and temporal population distribution, is lacking. Consequently, based on the available data, it is difficult to identify factors influencing chemotype distribution and spread at the European level. Here we describe the results of a collaborative integrated work which aims (1) to characterize the trichothecene genotypes of strains from three Fusarium species, collected over the period 2000-2013 and (2) to enhance the standardization of epidemiological data collection. Information on host plant, country of origin, sampling location, year of sampling and previous crop of 1147 F graminearurn, 479 F culmorum, and 3 F cortaderiae strains obtained from 17 European countries was compiled and a map of trichothecene type B genotype distribution was plotted for each species. All information on the strains was collected in a freely accessible and updatable database (www.catalogueeu.luxmcc.lu), which will serve as a starting point for epidemiological analysis of potential spatial and temporal trichothecene genotype shifts in Europe. The analysis of the currently available European dataset showed that in F. grarninearum, the predominant genotype was 15-acetyldeoxynivalenol (15-ADON) (82.9%), followed by 3-acetyldeoxynivalenol (3-ADON) (13.6%), and nivalenol (NIV) (3.5%). In F culmorum, the prevalent genotype was 3-ADON (59.9%), while the NIV genotype accounted for the remaining 40.1%. Both, geographical and temporal patterns of trichothecene genotypes distribution were identified.Ministere de l'Agriculture, de la Viticulture et de la Protection des Consommateurs-Administration des Services Techniques de l'Agriculture; M.I.U.R. Project AGROGEN (Laboratory of GENomics for traits of AGROnomic importance in durum wheat: Identification of useful genes, functional analysis and assisted selection by biological markers for the development of the national seed chain) [602/Ric]; Felix Thornley Cobbold Trust; John Oldacre Foundation; Ministry of Agriculture of the Czech RepublicMinistry of Agriculture, Czech Republic [800415]; Spanish Ministry MINECOSpanish Government [AGL201.4-53928-C2-2-R]; Ministry of Agriculture and Food, Norway; Federal Ministry of Education and Research (BMBF) (GABI-KANADA), BonnFederal Ministry of Education & Research (BMBF) [FKZ 0313711A]; German Academic Exchange Service (DAAD), BonnDeutscher Akademischer Austausch Dienst (DAAD) [A/06/92183]; Finnish Ministry of Agriculture and Forestry; Direction Generale de l'Agriculture, Direction de la Recherche [D31-3159, D31-1162, D31-7055]; P.O.R. SARDEGNA F.S.; Danish Directorate for Food, Fisheries and Agri Business [FFS05-3]; Academy of FinlandAcademy of Finland [126917, 131957, 250904, 252162, 267188, 266984]; Olvi Foundation; Turku University Foundation; CIMO travel grant; Nordic network project New Emerging Mycotoxins and Secondary Metabolites in Toxigenic Fungi of Northern Europe - Nordic Research Board [090014]The Luxembourg institute of Science and Technology, LU, acknowledges the Ministere de l'Agriculture, de la Viticulture et de la Protection des Consommateurs-Administration des Services Techniques de l'Agriculture for financially supporting the Sentinelle project. The work on Italian strains has been financially supported through the M.I.U.R. Project AGROGEN (Laboratory of GENomics for traits of AGROnomic importance in durum wheat: Identification of useful genes, functional analysis and assisted selection by biological markers for the development of the national seed chain) (D. D. 14.03.2005 n. 602/Ric). Funding for the research of Ryan Basler was provided by Felix Thornley Cobbold Trust and the John Oldacre Foundation.; The work of JC was supported by the Ministry of Agriculture of the Czech Republic, Project No. 800415. The research of MG and PG was supported by the Spanish Ministry MINECO (AGL201.4-53928-C2-2-R). The Ministry of Agriculture and Food, Norway funded the work of IH. The research of TM was funded by the Federal Ministry of Education and Research (BMBF) (GABI-KANADA #FKZ 0313711A), Bonn and by the German Academic Exchange Service (DAAD), Bonn (code no.: A/06/92183). PP acknowledges the Finnish Ministry of Agriculture and Forestry for funding the project FinMyco on Fusarium and mycotoxins in Finland. The research of JS was funded by the Direction Generale de l'Agriculture, Direction de la Recherche (ref. D31-3159, D31-1162, D31-7055), in the framework of a project entitled Caracterization et dynamique des fusarioses sur mais en Region Wallonne. BS acknowledges support by P.O.R. SARDEGNA F.S.E. 2007-2013-Obiettivo competitivita regionale e occupazione, Asse IV Capitale umano, Linea di Attivita 1.3.1 (research project Identification of natural and natural-like molecules inhibiting mycotoxin biosynthesis by Fusaria pathogenic on cereals). UT thanks the Danish Directorate for Food, Fisheries and Agri Business grant FFS05-3 for financial support. The work of TY was financially supported by the Academy of Finland (no. 126917, 131957, 250904, 252162, 267188, and 266984), Olvi Foundation, Turku University Foundation, a CIMO travel grant to Taha Hussien, and the Nordic network project New Emerging Mycotoxins and Secondary Metabolites in Toxigenic Fungi of Northern Europe (project 090014), which was funded by the Nordic Research Board
Recommended from our members
Mapping-by-sequencing in complex polyploid genomes using genic sequence capture: a case study to map yellow rust resistance in hexaploid wheat
Previously we extended the utility of mapping-by-sequencing by combining it with sequence capture and mapping sequence data to pseudo-chromosomes that were organized using wheat-Brachypodium synteny. This, with a bespoke haplotyping algorithm, enabled us to map the flowering time locus in the diploid wheat Triticum monococcum L identifying a set of deleted genes (Gardiner et al., 2014). Here, we develop this combination of gene enrichment and sliding window mapping-by-synteny analysis to map the Yr6 locus for yellow stripe rust resistance in hexaploid wheat. A 110MB NimbleGen capture probe set was used to enrich and sequence a doubled-haploid mapping population of hexaploid wheat derived from an Avalon and Cadenza cross. The Yr6 locus was identified by mapping to the POPSEQ chromosomal pseudomolecules using a bespoke pipeline and algorithm (Chapman et al., 2015). Furthermore the same locus was identified using newly developed pseudo-chromosome sequences as a mapping reference that are based on the genic sequence used for sequence enrichment. The pseudo-chromosomes allow us to demonstrate the application of mapping-by-sequencing to even poorly defined polyploidy genomes where chromosomes are incomplete and sub-genome assemblies are collapsed. This analysis uniquely enabled us to: compare wheat genome annotations; identify the Yr6 locus - defining a smaller genic region than was previously possible; associate the interval with one wheat sub-genome and increase the density of SNP markers associated. Finally, we built the pipeline in iPlant, making it a user-friendly community resource for phenotype mapping
Communication style and exercise compliance in physiotherapy (CONNECT). A cluster randomized controlled trial to test a theory-based intervention to increase chronic low back pain patientsâ adherence to physiotherapistsâ recommendations: study rationale, design, and methods
Physical activity and exercise therapy are among the accepted clinical rehabilitation guidelines and are recommended self-management strategies for chronic low back pain. However, many back pain sufferers do not adhere to their physiotherapistâs recommendations. Poor patient adherence may decrease the effectiveness of advice and home-based rehabilitation exercises. According to self-determination theory, support from health care practitioners can promote patientsâ autonomous motivation and greater long-term behavioral persistence (e.g., adherence to physiotherapistsâ recommendations). The aim of this trial is to assess the effect of an intervention designed to increase physiotherapistsâ autonomy-supportive communication on low back pain patientsâ adherence to physical activity and exercise therapy recommendations. \ud
\ud
This study will be a single-blinded cluster randomized controlled trial. Outpatient physiotherapy centers (N =12) in Dublin, Ireland (populationâ=â1.25 million) will be randomly assigned using a computer-generated algorithm to either the experimental or control arm. Physiotherapists in the experimental arm (two hospitals and four primary care clinics) will attend eight hours of communication skills training. Training will include handouts, workbooks, video examples, role-play, and discussion designed to teach physiotherapists how to communicate in a manner that promotes autonomous patient motivation. Physiotherapists in the waitlist control arm (two hospitals and four primary care clinics) will not receive this training. Participants (Nâ=â292) with chronic low back pain will complete assessments at baseline, as well as 1âweek, 4âweeks, 12âweeks, and 24âweeks after their first physiotherapy appointment. Primary outcomes will include adherence to physiotherapy recommendations, as well as low back pain, function, and well-being. Participants will be blinded to treatment allocation, as they will not be told if their physiotherapist has received the communication skills training. Outcome assessors will also be blinded. \ud
\ud
We will use linear mixed modeling to test between arm differences both in the mean levels and the rates of change of the outcome variables. We will employ structural equation modeling to examine the process of change, including hypothesized mediation effects. \ud
\ud
This trial will be the first to test the effect of a self-determination theory-based communication skills training program for physiotherapists on their low back pain patientsâ adherence to rehabilitation recommendations. Current Controlled Trials ISRCTN63723433\u
Recommended from our members
The identification of QTL controlling ergot sclerotia size in hexaploid wheat implicates a role for the Rht dwarfing alleles
The fungal pathogen Claviceps purpurea infects ovaries of a broad range of temperate grasses and cereals, including hexaploid wheat, causing a disease commonly known as ergot. Sclerotia produced in place of seed carry a cocktail of harmful alkaloid compounds that result in a range of symptoms in humans and animals, causing ergotism. Following a field assessment of C. purpurea infection in winter wheat, two varieties âRobigusâ and âSolsticeâ were selected which consistently produced the largest differential effect on ergot sclerotia weights. They were crossed to produce a doubled haploid mapping population, and a marker map, consisting of 714 genetic loci and a total length of 2895 cM was produced. Four ergot reducing QTL were identified using both sclerotia weight and size as phenotypic parameters; QCp.niab.2A and QCp.niab.4B being detected in the wheat variety âRobigusâ, and QCp.niab.6A and QCp.niab.4D in the variety âSolsticeâ. The ergot resistance QTL QCp.niab.4B and QCp.niab.4D peaks mapped to the same markers as the known reduced height (Rht) loci on chromosomes 4B and 4D, Rht-B1 and Rht-D1, respectively. In both cases, the reduction in sclerotia weight and size was associated with the semi-dwarfing alleles, Rht-B1b from âRobigusâ and Rht-D1b from âSolsticeâ. Two-dimensional, two-QTL scans identified significant additive interactions between QTL QCp.niab.4B and QCp.niab.4D, and between QCp.niab.2A and QCp.niab.4B when looking at sclerotia size, but not between QCp.niab.2A and QCp.niab.4D. The two plant height QTL, QPh.niab.4B and QPh.niab.4D, which mapped to the same locations as QCp.niab.4B and QCp.niab.4D, also displayed significant genetic interactions
A European Database of Fusarium graminearum and F. culmorum Trichothecene Genotypes
. Fusarium species, particularly Fusarium graminearum and F culmorum, are the main cause of trichothecene type B contamination in cereals. Data on the distribution of Fusarium trichothecene genotypes in cereals in Europe are scattered in time and space. Furthermore, a common core set of related variables (sampling method, host cultivar, previous crop, etc.) that would allow more effective analysis of factors influencing the spatial and temporal population distribution, is lacking. Consequently, based on the available data, it is difficult to identify factors influencing chemotype distribution and spread at the European level. Here we describe the results of a collaborative integrated work which aims (1) to characterize the trichothecene genotypes of strains from three Fusarium species, collected over the period 2000-2013 and (2) to enhance the standardization of epidemiological data collection. Information on host plant, country of origin, sampling location, year of sampling and previous crop of 1147 F graminearurn, 479 F culmorum, and 3 F cortaderiae strains obtained from 17 European countries was compiled and a map of trichothecene type B genotype distribution was plotted for each species. All information on the strains was collected in a freely accessible and updatable database (www.catalogueeu.luxmcc.lu), which will serve as a starting point for epidemiological analysis of potential spatial and temporal trichothecene genotype shifts in Europe. The analysis of the currently available European dataset showed that in F. grarninearum, the predominant genotype was 15-acetyldeoxynivalenol (15-ADON) (82.9%), followed by 3-acetyldeoxynivalenol (3-ADON) (13.6%), and nivalenol (NIV) (3.5%). In F culmorum, the prevalent genotype was 3-ADON (59.9%), while the NIV genotype accounted for the remaining 40.1%. Both, geographical and temporal patterns of trichothecene genotypes distribution were identified.</p
A European Database of Fusarium graminearum and F-culmorum Trichothecene Genotypes
Fusarium species, particularly Fusarium graminearum and F culmorum, are the main cause of trichothecene type B contamination in cereals. Data on the distribution of Fusarium trichothecene genotypes in cereals in Europe are scattered in time and space. Furthermore, a common core set of related variables (sampling method, host cultivar, previous crop, etc.) that would allow more effective analysis of factors influencing the spatial and temporal population distribution, is lacking. Consequently, based on the available data, it is difficult to identify factors influencing chemotype distribution and spread at the European level. Here we describe the results of a collaborative integrated work which aims (1) to characterize the trichothecene genotypes of strains from three Fusarium species, collected over the period 2000-2013 and (2) to enhance the standardization of epidemiological data collection. Information on host plant, country of origin, sampling location, year of sampling and previous crop of 1147 F graminearurn, 479 F culmorum, and 3 F cortaderiae strains obtained from 17 European countries was compiled and a map of trichothecene type B genotype distribution was plotted for each species. All information on the strains was collected in a freely accessible and updatable database (www.catalogueeu.luxmcc.lu), which will serve as a starting point for epidemiological analysis of potential spatial and temporal trichothecene genotype shifts in Europe. The analysis of the currently available European dataset showed that in F. grarninearum, the predominant genotype was 15-acetyldeoxynivalenol (15-ADON) (82.9%), followed by 3-acetyldeoxynivalenol (3-ADON) (13.6%), and nivalenol (NIV) (3.5%). In F culmorum, the prevalent genotype was 3-ADON (59.9%), while the NIV genotype accounted for the remaining 40.1%. Both, geographical and temporal patterns of trichothecene genotypes distribution were identified
Diversity of Fusarium species isolated from UK forage maize and the population structure of F-graminearum from maize and wheat
Pre-harvest contamination of forage maize by mycotoxin producing Fusarium species was investigated in the UK in 2011 and 2012. A total of 15 Fusarium species were identified from a collection of 1,761 Fusarium isolates recovered from maize stalks and kernels. This study characterized the diversity of Fusarium species present in forage maize in the UK. The predominant species detected were F. graminearum (32.9%)) and F. culmorum (34.1%). Along with those species; F. avenacem, F. cereaiis, E equiseti, F. langsethiae, F. napiforme, F. oxysporum, F. poae F. proliferatum, F. scripi, F. solani, F. subglutinans, F. tricinctum and, F. verticillioides were occasionally isolated. The trichothecene genotypes for F. graminearum were determined to be 84.9% deoxynivalenol (DON) and 15.0% nivalenol (NIV) while F. culmorum isolates were determined to have 24.9% DON and 75.1% NIV genotypes. A Bayesian model-based clustering method with nine variable number of tandem repeat markers was used to evaluate the population genetic structure of 277 F. graminearum isolates from the maize and wheat in the UK. There were three genetic clusters detected which were DON in maize, NIV in maize an in wheat. There were high admixture probabilities for 14.1% of the isolates in the populations. In conclusion, increased maize production in the UK and the high admixture rates in a significant portion of F. graminearum populations in maize and wheat will contribute to a new pathogen population which will further complicate breeding strategies for tolerance or resistance to this pathogen in both crops
Structure, Receptor Binding, and Antigenicity of Influenza Virus Hemagglutinins from the 1957 H2N2 Pandemicâż â
The hemagglutinin (HA) envelope protein of influenza viruses mediates essential viral functions, including receptor binding and membrane fusion, and is the major viral antigen for antibody neutralization. The 1957 H2N2 subtype (Asian flu) was one of the three great influenza pandemics of the last century and caused 1 million deaths globally from 1957 to 1968. Three crystal structures of 1957 H2 HAs have been determined at 1.60 to 1.75 Ă
resolutions to investigate the structural basis for their antigenicity and evolution from avian to human binding specificity that contributed to its introduction into the human population. These structures, which represent the highest resolutions yet recorded for a complete ectodomain of a glycosylated viral surface antigen, along with the results of glycan microarray binding analysis, suggest that a hydrophobicity switch at residue 226 and elongation of receptor-binding sites were both critical for avian H2 HA to acquire human receptor specificity. H2 influenza viruses continue to circulate in birds and pigs and, therefore, remain a substantial threat for transmission to humans. The H2 HA structure also reveals a highly conserved epitope that could be harnessed in the design of a broader and more universal influenza A virus vaccine
Un outil moléculaire basé sur le séquençage haut débit pour caractériser les Fusarium sur céréales
La fusariose est une maladie des cĂ©rĂ©ales causĂ©e par un complexe dâespĂšces du genre Fusarium. Elle
provoque une baisse du rendement et de la qualité technologique des grains. Certaines espÚces de
Fusarium produisent des mycotoxines, mĂ©tabolites secondaires toxiques, qui sâaccumulent dans les
grains et sont transmises le long de la chaßne de transformation agro-alimentaire. Un outil innovant a été
développé permettant de dresser un inventaire exhaustif des espÚces de Fusarium présentes dans des
Ă©chantillons de cĂ©rĂ©ales par lâanalyse de sĂ©quences barcodes gĂ©nĂ©rĂ©es par sĂ©quençage haut dĂ©bit.
Cette approche devra permettre de dĂ©tecter et gĂ©rer plus efficacement les Ă©mergences dâespĂšces de
Fusarium ou toute modification de la diversité du complexe Fusarium.Fusarium head blight is a major cereal disease caused by a complex of Fusarium species reducing grain
yield and quality. In addition, some Fusarium species produce mycotoxins, toxic secondary metabolites,
which accumulates in the grains and are a major health and food safety concern due to their toxicity to
humans and animals. A new tool was developed for the assessment of the global Fusarium diversity in
field samples by analysing barcode sequences generated by high throughput sequencing. This approach
may be used to show changes in the composition of the Fusarium complex or detect the emergence of
new Fusarium species
Metabarcoding targeting the EF1 alpha region to assess Fusarium diversity on cereals
Fusarium head blight (FHB) is a major cereal disease caused by a complex of Fusarium species. These species vary in importance depending on climatic conditions, agronomic factors or host genotype. In addition, Fusarium species can release toxic secondary metabolites. These mycotoxins constitute a significant food safety concern as they have health implications in both humans and animals. The Fusarium species involved in FHB differ in their pathogenicity, ability to produce mycotoxins, and fungicide sensitivity. Accurate and exhaustive identification of Fusarium species in planta is therefore of great importance. In this study, using a new set of primers targeting the EF1 alpha gene, the diversity of Fusarium species on cereals was evaluated using Illumina high-throughput sequencing. The PCR amplification parameters and bioinformatic pipeline were optimized with mock and artificially infected grain communities and further tested on 65 field samples. Fusarium species were retrieved from mock communities and good reproducibility between different runs or PCR cycle numbers was be observed. The method enabled the detection of as few as one single Fusarium-infected grain in 10,000. Up to 17 different Fusarium species were detected in field samples of barley, durum and soft wheat harvested in France. This new set of primers enables the assessment of Fusarium diversity by high-throughput sequencing on cereal samples. It provides a more exhaustive picture of the Fusarium community than the currently used techniques based on isolation or species-specific PCR detection. This new experimental approach may be used to show changes in the composition of the Fusarium complex or to detect the emergence of new Fusarium species as far as the EF1 alpha sequence of these species show a sufficient amount of polymorphism in the portion of sequence analyzed. Information on the distribution and prevalence of the different Fusarium species in a given geographical area, and in response to various environmental factors, is of great interest for managing the disease and predicting mycotoxin contamination risks