15 research outputs found

    Heterozygous De Novo UBTF Gain-of-Function Variant Is Associated with Neurodegeneration in Childhood.

    Get PDF
    Ribosomal RNA (rRNA) is transcribed from rDNA by RNA polymerase I (Pol I) to produce the 45S precursor of the 28S, 5.8S, and 18S rRNA components of the ribosome. Two transcription factors have been defined for Pol I in mammals, the selectivity factor SL1, and the upstream binding transcription factor (UBF), which interacts with the upstream control element to facilitate the assembly of the transcription initiation complex including SL1 and Pol I. In seven unrelated affected individuals, all suffering from developmental regression starting at 2.5-7 years, we identified a heterozygous variant, c.628G\u3eA in UBTF, encoding p.Glu210Lys in UBF, which occurred de novo in all cases. While the levels of UBF, Ser388 phosphorylated UBF, and other Pol I-related components (POLR1E, TAF1A, and TAF1C) remained unchanged in cells of an affected individual, the variant conferred gain of function to UBF, manifesting by markedly increased UBF binding to the rDNA promoter and to the 5\u27- external transcribed spacer. This was associated with significantly increased 18S expression, and enlarged nucleoli which were reduced in number per cell. The data link neurodegeneration in childhood with altered rDNA chromatin status and rRNA metabolism

    Anatomy of the mouse penis and internal prepuce

    No full text
    This paper addresses a confusing issue of preputial anatomy of the mouse. The term "internal prepuce" was used in 2013 to describe a preputial structure integral to the mouse glans penis. Subsequently in 2015 the same term was applied by another group to describe entirely different morphology, generating confusion in the literature. Because it is inappropriate to use the same term to describe entirely different structures, we take this opportunity to provide further descriptive information on the internal prepuce of the mouse employing gross dissection, analysis of serial histologic section sets, three-dimensional reconstruction, scanning electron microscopy and immunohistochemistry. For this purpose, we review and illustrate the relevant literature and provide some additional new data using standard morphological techniques including immunohistochemistry. The mouse internal prepuce is integral to the glans penis and clearly is involved in sexual function in so far as it contains a major erectile body innervated by penile nerves. The development of the mouse internal prepuce is described for the first time and related to the development of the corpus cavernosum glandis

    Estrogens and development of the mouse and human external genitalia

    No full text
    The Jost hypothesis states that androgens are necessary for normal development of the male external genitalia. In this review, we explore the complementary hypothesis that estrogens can elicit abnormal development of male external genitalia. Herein, we review available data in both humans and mice on the deleterious effects of estrogen on external genitalia development, especially during the "window of susceptibility" to exogenous estrogens. The male and female developing external genitalia in both the human and mouse express ESR1 and ESR2, along with the androgen receptor (AR). Human clinical data suggests that exogenous estrogens can adversely affect normal penile and urethral development, resulting in hypospadias. Experimental mouse data also strongly supports the idea that exogenous estrogens cause penile and urethral defects. Despite key differences, estrogen-induced hypospadias in the mouse displays certain morphogenetic homologies to human hypospadias, including disruption of urethral fusion and preputial abnormalities. Timing of estrogenic exposure, or the "window of susceptibility," is an important consideration when examining malformations of the external genitalia in both humans and mice. In addition to a review of normal human and mouse external genital development, this article aims to review the present data on the role of estrogens in normal and abnormal development of the mouse and human internal and external genitalia. Based on the current literature for both species, we conclude that estrogen-dependent processes may play a role in abnormal genital development

    <em>De novo</em> mutations in SON disrupt RNA splicing of genes essential for brain development and metabolism, causing an intellectual-disability syndrome.

    No full text
    The overall understanding of the molecular etiologies of intellectual disability (ID) and developmental delay (DD) is increasing as next-generation sequencing technologies identify genetic variants in individuals with such disorders. However, detailed analyses conclusively confirming these variants, as well as the underlying molecular mechanisms explaining the diseases, are often lacking. Here, we report on an ID syndrome caused by de novo heterozygous loss-of-function (LoF) mutations in SON. The syndrome is characterized by ID and/or DD, malformations of the cerebral cortex, epilepsy, vision problems, musculoskeletal abnormalities, and congenital malformations. Knockdown of son in zebrafish resulted in severe malformation of the spine, brain, and eyes. Importantly, analyses of RNA from affected individuals revealed that genes critical for neuronal migration and cortex organization (TUBG1, FLNA, PNKP, WDR62, PSMD3, and&nbsp;HDAC6) and metabolism (PCK2, PFKL, IDH2, ACY1, and ADA) are significantly downregulated because of the accumulation of mis-spliced transcripts resulting from erroneous SON-mediated RNA splicing. Our data highlight SON as a master regulator governing neurodevelopment and demonstrate the importance of SON-mediated RNA splicing in human development
    corecore