6 research outputs found

    Using auxiliary gas power for CCS energy needs in retrofitted coal power plants

    Get PDF
    Adding post-combustion capture technology to existing coal-fired power plants is being considered as a near-term option for mitigating CO[subscript 2] emissions. To supply the thermal energy needed for CO[subscript 2] capture, much of the literature proposes thermal integration of the existing coal plant’s steam cycle with the capture process’ stripper reboiler. This paper examines the option of using an auxiliary natural gas turbine plant to meet the energetic demands of carbon capture and compression. Three different auxiliary plant technologies were compared to integration for 90% capture from an existing, 500 MW supercritical coal plant. CO[subscript 2] capture (via a monoethylamine (MEA) absorption process) and compression is simulated using Aspen Plus. Thermoflow software is used to simulate three gas plant technologies. In some circumstances, it is found that using an auxiliary natural gas turbine may make retrofits more attractive compared to using thermal integration. The most important factors affecting desirability of the auxiliary plant retrofit are the cost of natural gas, the full cost of integration, and the potential for sale of excess electricity.Research Council of Norway (Statoil (Firm: Norway)Massachusetts Institute of Technology. Carbon Sequestration Initiativ

    On the retrofitting and repowering of coal power plants with post-combustion carbon capture: An advanced integration option with a gas turbine windbox

    Get PDF
    Retrofitting a significant fraction of existing coal-fired power plants is likely to be an important part of a global rollout of carbon capture and storage. For plants suited for a retrofit, the energy penalty for post-combustion carbon capture can be minimised by effective integration of the capture system with the power cycle. Previous work on effective integration options has typically been focused on either steam extraction from the power cycle with a reduction of the site power output, or the supply of heat and electricity to the capture system via the combustion of natural gas, with little consideration for the associated carbon emissions. This article proposes an advanced integration concept between the gas turbine, the existing coal plant and post-combustion capture processes with capture of carbon emissions from both fuels. The exhaust gas of the gas turbine enters the existing coal boiler via the windbox for sequential combustion to allow capture in a single dedicated capture plant, with a lower flow rate and a higher CO2 concentration of the resulting flue gas. With effective integration of the heat recovery steam generator with the boiler, the existing steam cycle and the carbon capture process, the reference subcritical unit used in this study can be repowered with an electricity output penalty of 295 kWh/tCO2 – 5% lower than a conventional steam extraction retrofit of the same unit – and marginal thermal efficiency of natural gas combustion of 50% LHV – 5% point higher than in a configuration where the gas turbine has a dedicated capture unit

    Process simulations of post-combustion CO2 capture for coal and natural gas-fired power plants using a polyethyleneimine/silica adsorbent

    Get PDF
    The regeneration heat for a polyethyleneimine (PEI)/silica adsorbent based carbon capture system is first assessed in order to evaluate its effect on the efficiency penalty of a coal or natural gas power plant. Process simulations are then carried out on the net plant efficiencies for a specific supercritical 550 MWe pulverized coal (PC) and a 555 MWe natural gas combined cycle (NGCC) power plant integrated with a conceptually designed capture system using fluidized beds and PEI/silica adsorbent. A benchmark system applying an advanced MEA absorption technology in a NETL report (2010) is used as a reference system. Using the conservatively estimated parameters, the net plant efficiency of the PC and NGCC power plant with the proposed capture system is found to be 1.5% and 0.6% point higher than the reference PC and NGCC systems, respectively. Sensitivity analysis has revealed that the moisture adsorption, working capacity and heat recovery strategies are the most influential parameters to the power plant efficiency. Under an optimal scenario with improvements in increasing the working capacity by 2% points and decreasing moisture adsorption by 1% point, the plant efficiencies with the proposed capture system are 2.7% (PC) and 1.9% (NGCC) points higher than the reference systems

    Using auxiliary gas power for carbon capture and storage energy needs in retrofitted coal power plants

    No full text
    Thesis (S.M. in Technology and Policy)--Massachusetts Institute of Technology, Engineering Systems Division, Technology and Policy Program, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 93-96).Post-combustion capture retrofits are expected to a near-term option for mitigating CO 2 emissions from existing coal-fired power plants. Much of the literature proposes using power from the existing coal plant and thermal integration of its supercritical steam cycle with the stripper reboiler to supply the energy needed for solvent regeneration and CO2 compression. This study finds that using an auxiliary natural gas turbine plant to meet the energetic demands of carbon capture and compression may make retrofits more attractive compared to using thermal integration in some circumstances. Natural gas auxiliary plants increase the power output of the base plant and reduce technological risk associated with CCS, but require favorable natural gas prices and regional electricity demand for excess electricity to make using an auxiliary plant more desirable. Three different auxiliary plant technologies were compared to integration for 90% capture from an existing, 500 MW supercritical coal plant. CO2 capture and compression is simulated using Aspen Plus and a monoethylamine (MEA) absorption process. Thermoflow software is used to simulate three gas plant technologies. The three technologies assessed are the gas turbine (GT) with heat recovery steam generator (HRSG), gas turbine with HRSG and back pressure steam turbine, and natural gas boiler with back pressure steam turbine. The capital cost of the MEA unit is estimated using the Aspen Icarus Process Evaluator, and the capital cost of the external GT plants are estimated using the Thermoflow Plant Engineering and Cost Estimator. The gas turbine options are found to lead to electricity costs similar to integration, but their performance is highly sensitive to the price of natural gas and the economic impact of integration. Using a GT with a HRSG only has a lower capital cost but generates less excess electricity than the GT with HRSG and back pressure steam turbine. In order to generate enough steam for the reboiler, a significant amount of excess power was produced using both gas turbine configurations. This excess power could be attractive for coal plants located in regions with increasing electricity demand. An alternate capture plant scenario where a greater demand for power exists relative to steam is also considered. The economics of using auxiliary plant power improve slightly under this alternate energy profile scenario, but the most important factors affecting desirability of the auxiliary plant retrofit remain the cost of natural gas, the full cost of integration, and the potential for sale of excess electricity.by Sarah Bashadi.S.M.in Technology and Polic
    corecore