45 research outputs found

    Morphometric analyses of the visual pathways in macular degeneration

    Full text link
    Introduction. Macular degeneration (MD) causes central visual field loss. When field defects occur in both eyes and overlap, parts of the visual pathways are no longer stimulated. Previous reports have shown that this affects the grey matter of the primary visual cortex, but possible effects on the preceding visual pathway structures have not been fully established. Method. In this multicentre study, we used high-resolution anatomical magnetic resonance imaging and voxel-based morphometry to investigate the visual pathway structures up to the primary visual cortex of patients with age-related macular degeneration (AMD) and juvenile macular degeneration (JMD). Results. Compared to age-matched healthy controls, in patients with JMD we found volumetric reductions in the optic nerves, the chiasm, the lateral geniculate bodies, the optic radiations and the visual cortex. In patients with AMD we found volumetric reductions in the lateral geniculate bodies, the optic radiations and the visual cortex. An unexpected finding was that AMD, but not JMD, was associated with a reduction in frontal white matter volume. Conclusion. MD is associated with degeneration of structures along the visual pathways. A reduction in frontal white matter volume only present in the AMD patients may constitute a neural correlate of previously reported association between AMD and mild cognitive impairment. Keywords: macular degeneration - visual pathway - visual field - voxel-based morphometryComment: appears in Cortex (2013

    The negative impact of COVID-19 on working memory revealed using a rapid online quiz

    Get PDF
    Although coronavirus disease 2019 (COVID-19) affects the respiratory system, it can also have neurological consequences leading to cognitive deficits such as memory problems. The aim of our study was to assess the impact of COVID-19 on working memory function. We developed and implemented an online anonymous survey with a working memory quiz incorporating aspects of gamification to engage participants. 5428 participants successfully completed the survey and memory quiz between 8 th December 2020 and 5 th July 2021 (68.6COVID-19 and 31.419). Most participants (93.3 completed the survey and memory quiz relatively rapidly (mean time of 8.84 minutes). Categorical regression was used to assess the contribution of COVID status, age, time post-COVID (number of months elapsed since having had COVID), symptoms, ongoing symptoms and gender, followed by non-parametric statistics. A principal component analysis explored the relationship between subjective ratings and objective memory scores. The objective memory scores were significantly correlated with participants’ own assessment of their cognitive function. The factors significantly affecting memory scores were COVID status, age, time post-COVID and ongoing symptoms. Our main finding was a significant reduction in memory scores in all COVID groups (self-reported, positive-tested and hospitalised) compared to the non-COVID group. Memory scores for all COVID groups combined were significantly reduced compared to the non-COVID group in every age category 25 years and over, but not for the youngest age category (18-24 years old). We found that memory scores gradually increased over a period of 17 months post-COVID-19. However, those with ongoing COVID-19 symptoms continued to show a reduction in memory scores. Our findings demonstrate that COVID-19 negatively impacts working memory function, but only in adults aged 25 years and over. Moreover, our results suggest that working memory deficits with COVID-19 can recover over time, although impairments may persist in those with ongoing symptoms.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThe authors received no specific funding for this work.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.Not ApplicableThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:Local ethical approval was given by the Hull York Medical School Ethics Committee (Reference 20 62).I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.Not ApplicableI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).Not Applicable I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.Not ApplicableThe data for the study will be made available in the Supporting Information after manuscript acceptance

    Cortical atrophy predicts visual performance in long-term central retinal disease; GCL, pRNFL and cortical thickness are key biomarkers

    Get PDF
    Purpose: The aim of this study was to assess both retinal and cortical structure in a cohort of patients with long-term acquired central retinal disease in order to identify potential disease biomarkers and to explore the relationship between the anterior and posterior visual pathways. Methods: Fourteen participants diagnosed with long-term central retinal disease underwent structural assessments of the retina using spectral-domain optical coherence tomography, including macular ganglion cell layer (GCL) and peripapillary retinal nerve fiber layer (pRNFL) thickness. Structural magnetic resonance imaging was used to measure visual cortex, including cortical volume of the entire occipital lobe and cortical thickness of the occipital pole and calcarine sulcus, representing the central and peripheral retina, respectively. Results: Mean thickness was significantly reduced in both the macular GCL and the inferior temporal pRNFL across patients. Cortical thickness was significantly reduced in both the occipital pole and calcarine sulcus, representing the central and peripheral retina, respectively. Disease duration significantly correlated with GCL thickness with a large effect size, whereas a medium effect size suggests the possibility that cortical thickness in the occipital pole may correlate with visual acuity. Conclusions: Long-term central retinal disease is associated with significant structural changes to both the retina and the brain. Exploratory analysis suggests that monitoring GCL thickness may be a sensitive biomarker of disease progression and reductions in visual cortical thickness may be associated with reduced visual acuity. Although this study is limited by its heterogeneous population, larger cohort studies would be needed to better establish some of the relationships detected between disease dependent structural properties of the anterior and posterior visual pathway given the effect sizes reported in our exploratory analysis

    Categorisation of Mobile EEG : A Researcher’s Perspective

    Get PDF
    Researchers are increasingly attempting to undertake electroencephalography (EEG) recordings in novel environments and contexts outside of the traditional static laboratory setting. The term “mobile EEG,” although commonly used to describe many of these undertakings, is ambiguous, since it attempts to encompass a wide range of EEG device mobility, participant mobility, and system specifications used across investigations. To provide quantitative parameters for “mobile EEG,” we developed a Categorisation of Mobile EEG (CoME) scheme based upon scoring of device mobility (, from 0, off-body, to 5, head-mounted with no additional equipment), participant mobility (, from 0, static, to 5, unconstrained running), system specification (, from 4, lowest, to 20, highest), and number of channels () used. The CoME scheme was applied to twenty-nine published mobile EEG studies. Device mobility scores ranged from 0 to 4, participant mobility scores from 0 to 4, and system specification scores from 6 to 17. The format of the scores for the four parameters is given, for example, as (2, 4, 17, 32) and readily enables comparisons across studies. Our CoME scheme enables researchers to quantify the degree of device mobility, participant mobility, and system specification used in their “mobile EEG” investigations in a standardised way

    Use of 31P Magnetisation Transfer Magnetic Resonance Spectroscopy to Measure ATP changes after 670 nm transcranial photobiomodulation in older adults

    Get PDF
    Mitochondrial function declines with age, and many pathological processes in neurodegenerative diseases stem from this dysfunction when mitochondria fail to produce the necessary energy required. Photobiomodulation (PBM), long‐wavelength light therapy, has been shown to rescue mitochondrial function in animal models and improve human health, but clinical uptake is limited due to uncertainty around efficacy and the mechanisms responsible. Using 31P magnetisation transfer magnetic resonance spectroscopy (MT‐MRS) we quantify, for the first time, the effects of 670 nm PBM treatment on healthy ageing human brains. We find a significant increase in the rate of ATP synthase flux in the brain after PBM in a cohort of older adults. Our study provides initial evidence of PBM therapeutic efficacy for improving mitochondrial function and restoring ATP flux with age, but recognises that wider studies are now required to confirm any resultant cognitive benefits

    Following the status of visual cortex over time in patients with macular degeneration reveals atrophy of visually deprived brain regions

    Get PDF
    Purpose: Previous research has shown atrophy of visual cortex can occur in retinotopic representations of retinal lesions resulting from eye disease. However, the time course of atrophy cannot be established from these cross-sectional studies, which included patients with long-standing disease of varying severity. Our aim therefore was to measure visual cortical structure over time in participants after onset of unilateral visual loss resulting from age-related macular degeneration (AMD). Methods: Inclusion criteria were onset of acute unilateral neovascular AMD with bilateral dry-AMD based on clinical examination. Therefore, substantial loss of unilateral visual input to cortex was relatively well-defined in time. Changes in cortical anatomy were assessed in the occipital lobe as a whole, and in cortical representations of the lesion and intact retina, the lesion and intact projection zones, respectively. Whole brain, T1-weighted MRI was taken at diagnosis (before anti-angiogenic treatment to stabilise the retina), during the 3-4-month initial treatment period, with a long-term follow-up ~5 (range 3.8 – 6.1 years) years later. Results: Significant cortical atrophy was detected at long-term follow-up only, with a reduction in mean cortical volume across the whole occipital lobe. Importantly, this reduction was explained by cortical thinning of the lesion projection zone, which suggests additional changes to those associated with normal ageing. Over the period of study, anti-angiogenic treatment stabilised visual acuity and central retinal thickness, suggesting that the atrophy detected was most likely governed by long-term decreased visual input. Conclusions: Our results indicate that consequences of eye disease on visual cortex are atrophic and retinotopic. Our work also raises the potential to follow the status of visual cortex in individuals over time to inform on how best to treat patients, particularly with restorative techniques

    Assessing the structure of the posterior visual pathway in bilateral macular degeneration

    Get PDF
    Abstract Macular degeneration (MD) embodies a collection of disorders causing a progressive loss of central vision. Cross-sectional MRI studies have revealed structural changes in the grey and white matter in the posterior visual pathway in MD but there remains a need to understand how such changes progress over time. To that end we assessed the posterior pathway, characterising the visual cortex and optic radiations over a ~ 2-year period in MD patients and controls. We performed cross-sectional and longitudinal analysis of the former. Reduced cortical thickness and white matter integrity were observed in patients compared to controls, replicating previous findings. While faster, neither the rate of thinning in visual cortex nor the reduction in white matter integrity during the ~ 2-year period reached significance. We also measured cortical myelin density; cross-sectional data showed this was higher in patients than controls, likely as a result of greater thinning of non-myelinated tissue in patients. However, we also found evidence of a greater rate of loss of myelin density in the occipital pole in the patient group indicating that the posterior visual pathway is at risk in established MD. Taken together, our results revealed a broad decline in grey and white matter in the posterior visual pathway in bilateral MD; cortical thickness and fractional anisotropy show hints of an accelerated rate of loss also, with larger effects emerging in the occipital pole

    Contributions of feature shapes and surface cues to the recognition and neural representation of facial identity

    Get PDF
    A full understanding of face recognition will involve identifying the visual information that is used to discriminate different identities and how this is represented in the brain. The aim of this study was to explore the importance of shape and surface properties in the recognition and neural representation of familiar faces. We used image morphing techniques to generate hybrid faces that mixed shape properties (more specifically, second order spatial configural information as defined by feature positions in the 2D-image) from one identity and surface properties from a different identity. Behavioural responses showed that recognition and matching of these hybrid faces was primarily based on their surface properties. These behavioural findings contrasted with neural responses recorded using a block design fMRI adaptation paradigm to test the sensitivity of Haxby et al.'s (2000) core face-selective regions in the human brain to the shape or surface properties of the face. The fusiform face area (FFA) and occipital face area (OFA) showed a lower response (adaptation) to repeated images of the same face (same shape, same surface) compared to different faces (different shapes, different surfaces). From the behavioural data indicating the critical contribution of surface properties to the recognition of identity, we predicted that brain regions responsible for familiar face recognition should continue to adapt to faces that vary in shape but not surface properties, but show a release from adaptation to faces that vary in surface properties but not shape. However, we found that the FFA and OFA showed an equivalent release from adaptation to changes in both shape and surface properties. The dissociation between the neural and perceptual responses suggests that, although they may play a role in the process, these core face regions are not solely responsible for the recognition of facial identity
    corecore