14 research outputs found

    Gamma-D crystallin gene (CRYGD) mutation causes autosomal dominant congenital cerulean cataracts

    Get PDF
    Congenital cataracts are a major cause of bilateral visual impairment in childhood. We mapped the gene responsible for autosomal congenital cerulean cataracts to chromosome 2q33-35 in a four generation family of Moroccan descent. The maximum lod score (7.19 at recombination fraction theta=0) was obtained for marker D2S2208 near the g-crystallin gene (CRYG) cluster. Sequencing of the coding regions of the CRYGA, B, C, and D genes showed the presence of a heterozygous C>A transversion in exon 2 of CRYGD that is associated with cataracts in this family. This mutation resulted in a proline to threonine substitution at amino acid 23 of the protein in the first of the four Greek key motifs that characterise this protein. We show that although the x ray crystallography modelling does not indicate any change of the backbone conformation, the mutation affects a region of the Greek key motif that is important for determining the topology of this protein fold. Our data suggest strongly that the proline to threonine substitution may alter the protein folding or decrease the thermodynamic stability or solubility of the protein. Furthermore, this is the first report of a mutation in this gene resulting in autosomal dominant congenital cerulean cataracts

    Clostridium perfringens α-toxin interaction with red cells and model membranes.

    Get PDF
    The effects of Clostridium perfringens α-toxin on host cells have previously been studied extensively but the biophysical processes associated with toxicity are poorly understood. The work reported here shows that the initial interaction between the toxin and lipid membrane leads to measurable changes in the physical properties and morphology of the membrane. A Langmuir monolayer technique was used to assess the response of different lipid species to toxin. Sphingomyelin and unsaturated phosphatidylcholine showed the highest susceptibility to toxin lypolitic action, with a two stage response to the toxin (an initial, rapid hydrolysis stage followed by the insertion and/or reorganisation of material in the monolayer). Fluorescence confocal microscopy on unsaturated phosphatidylcholine vesicles shows that the toxin initially aggregates at discrete sites followed by the formation of localised "droplets" accumulating the hydrolysis products. This process is accompanied by local increases in the membrane dipole potential by about 50 (±42) mV. In contrast, red blood cells incubated with the toxin suffered a decrease of the membrane dipole potential by 50 (±40) mV in areas of high toxin activity (equivalent to a change in electric field strength of 10(7) V m(-1)) which is sufficient to affect the functioning of the cell membrane. Changes in erythrocyte morphology caused by the toxin are presented, and the early stages of interaction between toxin and membrane are characterised using thermal shape fluctuation analysis of red cells which revealed two distinct regimes of membrane-toxin interaction.Royal Society University Research Fellowshi

    Structural insights into Clostridium perfringens delta toxin pore formation

    Get PDF
    Clostridium perfringens Delta toxin is one of the three hemolysin-like proteins produced by C. perfringens type C and possibly type B strains. One of the others, NetB, has been shown to be the major cause of Avian Nectrotic Enteritis, which following the reduction in use of antibiotics as growth promoters, has become an emerging disease of industrial poultry. Delta toxin itself is cytotoxic to the wide range of human and animal macrophages and platelets that present GM2 ganglioside on their membranes. It has sequence similarity with Staphylococcus aureus β-pore forming toxins and is expected to heptamerize and form pores in the lipid bilayer of host cell membranes. Nevertheless, its exact mode of action remains undetermined. Here we report the 2.4 Å crystal structure of monomeric Delta toxin. The superposition of this structure with the structure of the phospholipid-bound F component of S. aureus leucocidin (LukF) revealed that the glycerol molecules bound to Delta toxin and the phospholipids in LukF are accommodated in the same hydrophobic clefts, corresponding to where the toxin is expected to latch onto the membrane, though the binding sites show significant differences. From structure-based sequence alignment with the known structure of staphylococcal α-hemolysin, a model of the Delta toxin pore form has been built. Using electron microscopy, we have validated our model and characterized the Delta toxin pore on liposomes. These results highlight both similarities and differences in the mechanism of Delta toxin (and by extension NetB) cytotoxicity from that of the staphylococcal pore-forming toxins

    Clostridium perfringens epsilon toxin mutant Y30A-Y196A as a recombinant vaccine candidate against enterotoxemia

    Get PDF
    Epsilon toxin (Etx) is a β-pore-forming toxin produced by Clostridium perfringens toxinotypes B and D and plays a key role in the pathogenesis of enterotoxemia, a severe, often fatal disease of ruminants that causes significant economic losses to the farming industry worldwide. This study aimed to determine the potential of a site-directed mutant of Etx (Y30A-Y196A) to be exploited as a recombinant vaccine against enterotoxemia. Replacement of Y30 and Y196 with alanine generated a stable variant of Etx with significantly reduced cell binding and cytotoxic activities in MDCK.2 cells relative to wild type toxin (>430-fold increase in CT50) and Y30A-Y196A was inactive in mice after intraperitoneal administration of trypsin activated toxin at 1000× the expected LD50 dose of trypsin activated wild type toxin. Moreover, polyclonal antibody raised in rabbits against Y30A-Y196A provided protection against wild type toxin in an in vitro neutralisation assay. These data suggest that Y30A-Y196A mutant could form the basis of an improved recombinant vaccine against enterotoxemia

    Molecular architecture and functional analysis of NetB, a pore-forming toxin from Clostridium perfringens

    Get PDF
    NetB is a pore-forming toxin produced by Clostridium perfringens and has been reported to play a major role in the pathogenesis of avian necrotic enteritis, a disease that has emerged due to the removal of antibiotics in animal feedstuffs. Here we present the crystal structure of the pore-form of NetB solved to 3.9Å. The heptameric assembly shares structural homology to the Staphylococcal α-hemolysin. However, the rim domain, a region that is thought to interact with the target cell membrane shows sequence and structural divergence leading to the alteration of a phosphocholine binding pocket found in the staphylococcal toxins. Consistent with the structure we show that NetB does not bind phosphocholine efficiently but instead interacts directly with cholesterol leading to enhanced oligomerisation and pore formation. Finally we have identified conserved and non-conserved amino acid positions within the rim loops that significantly affect binding and toxicity of NetB. These findings present new insights into the mode of action of these pore-forming toxins enabling the design of more effective control measures against necrotic enteritis and providing potential new tools to the field of bionanotechnology

    Ultra-high resolution X-ray structures of two forms of human recombinant insulin at 100 K

    Get PDF
    The crystal structure of a commercially available form of human recombinant (HR) insulin, Insugen (I), used in the treatment of diabetes has been determined to 0.92 Å resolution using low temperature, 100 K, synchrotron X-ray data collected at 16,000 keV (λ = 0.77 Å). Refinement carried out with anisotropic displacement parameters, removal of main-chain stereochemical restraints, inclusion of H atoms in calculated positions, and 220 water molecules, converged to a final value of R = 0.1112 and Rfree = 0.1466. The structure includes what is thought to be an ordered propanol molecule (POL) only in chain D(4) and a solvated acetate molecule (ACT) coordinated to the Zn atom only in chain B(2). Possible origins and consequences of the propanol and acetate molecules are discussed. Three types of amino acid representation in the electron density are examined in detail: (i) sharp with very clearly resolved features; (ii) well resolved but clearly divided into two conformations which are well behaved in the refinement, both having high quality geometry; (iii) poor density and difficult or impossible to model. An example of type (ii) is observed for the intra-chain disulphide bridge in chain C(3) between Sγ6–Sγ11 which has two clear conformations with relative refined occupancies of 0.8 and 0.2, respectively. In contrast the corresponding S–S bridge in chain A(1) shows one clearly defined conformation. A molecular dynamics study has provided a rational explanation of this difference between chains A and C. More generally, differences in the electron density features between corresponding residues in chains A and C and chains B and D is a common observation in the Insugen (I) structure and these effects are discussed in detail. The crystal structure, also at 0.92 Å and 100 K, of a second commercially available form of human recombinant insulin, Intergen (II), deposited in the Protein Data Bank as 3W7Y which remains otherwise unpublished is compared here with the Insugen (I) structure. In the Intergen (II) structure there is no solvated propanol or acetate molecule. The electron density of Intergen (II), however, does also exhibit the three types of amino acid representations as in Insugen (I). These effects do not necessarily correspond between chains A and C or chains B and D in Intergen (II), or between corresponding residues in Insugen (I). The results of this comparison are reported

    Protection against avian necrotic enteritis after immunisation with NetB genetic or formaldehyde toxoids

    Get PDF
    NetB (necrotic enteritis toxin B) is a recently identified β-pore-forming toxin produced by Clostridium perfringens. This toxin has been shown to play a major role in avian necrotic enteritis. In recent years, a dramatic increase in necrotic enteritis has been observed, especially in countries where the use of antimicrobial growth promoters in animal feedstuffs has been banned. The aim of this work was to determine whether immunisation with a NetB toxoid would provide protection against necrotic enteritis. The immunisation of poultry with a formaldehyde NetB toxoid or with a NetB genetic toxoid (W262A) resulted in the induction of antibody responses against NetB and provided partial protection against disease

    Structure of a C. perfringens enterotoxin mutant in complex with a modified Claudin-2 extracellular loop 2

    No full text
    International audienceCPE (Clostridium perfringens enterotoxin) is the major virulence determinant for C. perfringens type-A food poisoning, the second most common bacterial food-borne illness in the UK and USA. After binding to its receptors, which include particular human claudins, the toxin forms pores in the cell membrane. The mature pore apparently contains a hexamer of CPE, claudin and, possibly, occludin. The combination of high binding specificity with cytotoxicity has resulted in CPE being investigated, with some success, as a targeted cytotoxic agent for oncotherapy. In this paper, we present the X-ray crystallographic structure of CPE in complex with a peptide derived from extracellular loop 2 of a modified, CPE-binding Claudin-2, together with high-resolution native and pore-formation mutant structures. Our structure provides the first atomic-resolution data on any part of a claudin molecule and reveals that claudin's CPE-binding fingerprint (NPLVP) is in a tight turn conformation and binds, as expected, in CPE's C-terminal claudin-binding groove. The leucine and valine residues insert into the binding groove while the first residue, asparagine, tethers the peptide via an interaction with CPE's aspartate 225 and the two prolines are required to maintain the tight turn conformation. Understanding the structural basis of the contribution these residues make to binding will aid in engineering CPE to target tumor cells
    corecore