45 research outputs found

    Event Weighted Tests for Detecting Periodicity in Photon Arrival Times

    Full text link
    This paper treats the problem of detecting periodicity in a sequence of photon arrival times, which occurs, for example, in attempting to detect gamma-ray pulsars. A particular focus is on how auxiliary information, typically source intensity, background intensity, and incidence angles and energies associated with each photon arrival should be used to maximize the detection power. We construct a class of likelihood-based tests, score tests, which give rise to event weighting in a principled and natural way, and derive expressions quantifying the power of the tests. These results can be used to compare the efficacies of different weight functions, including cuts in energy and incidence angle. The test is targeted toward a template for the periodic lightcurve, and we quantify how deviation from that template affects the power of detection

    Mixed effects of long-term conservation investment in Natura 2000 farmland

    Get PDF
    Evaluating the effectiveness of conservation funding is crucial for correct allocation of limited resources. Here we used bird monitoring data to assess the effects of long-term conservation investment in a Natura 2000 (N2000) bird protection area (PA), which during two decades benefited from protection regulations, conservation projects, and agri-environment schemes. Variation between 1995–1997 and 2010–2012 in richness and abundance of flagship (Otis tarda, Tetrax tetrax, and Falco naumanni) and specialized fallow field species were more favorable (i.e., increased more or declined less) inside the PA than in a nearby control area. However, the reverse was found for total bird species, farmland, ground-nesting and steppe species, species associated to ploughed fields, and species of European conservation concern. Enhancing the effectiveness of conservation investment in N2000 farmland may require a greater focus on the wider biodiversity alongside that currently devoted to flagship species, as well as improved matching between conservation and agricultural policies.info:eu-repo/semantics/publishedVersio

    Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper

    Get PDF
    Extracellular vesicles (EVs), such as exosomes and microvesicles, are released by different cell types and participate in physiological and pathophysiological processes. EVs mediate intercellular communication as cell-derived extracellular signalling organelles that transmit specific information from their cell of origin to their target cells. As a result of these properties, EVs of defined cell types may serve as novel tools for various therapeutic approaches, including (a) anti-tumour therapy, (b) pathogen vaccination, (c) immune-modulatory and regenerative therapies and (d) drug delivery. The translation of EVs into clinical therapies requires the categorization of EV-based therapeutics in compliance with existing regulatory frameworks. As the classification defines subsequent requirements for manufacturing, quality control and clinical investigation, it is of major importance to define whether EVs are considered the active drug components or primarily serve as drug delivery vehicles. For an effective and particularly safe translation of EV-based therapies into clinical practice, a high level of cooperation between researchers, clinicians and competent authorities is essential. In this position statement, basic and clinical scientists, as members of the International Society for Extracellular Vesicles (ISEV) and of the European Cooperation in Science and Technology (COST) program of the European Union, namely European Network on Microvesicles and Exosomes in Health and Disease (ME-HaD), summarize recent developments and the current knowledge of EV-based therapies. Aspects of safety and regulatory requirements that must be considered for pharmaceutical manufacturing and clinical application are highlighted. Production and quality control processes are discussed. Strategies to promote the therapeutic application of EVs in future clinical studies are addresse

    2007a). Event weighted tests for detecting periodicity in photon arrival times

    No full text
    This paper treats the problem of detecting periodicity in a sequence of photon arrival times, which occurs, for example, in attempting to detect gamma-ray pulsars. A particular focus is on how auxiliary information, typically source intensity, background intensity, and incidence angles and energies associated with each photon arrival should be used to maximize the detection power. We construct a class of likelihood-based tests, score tests, which give rise to event weighting in a principled and natural way, and derive expressions quantifying the power of the tests. These results can be used to compare the efficacies of different weight functions, including cuts in energy and incidence angle. The test is targeted toward a template for the periodic lightcurve, and we quantify how deviation from that template affects the power of detection.

    Superconformal hypermultiplets

    No full text
    We present theories of N=2 hypermultiplets in four spacetime dimensions that are invariant under rigid or local superconformal symmetries. The target spaces of theories with rigid superconformal invariance are (4n)-dimensional {\it special} hyper-K\"ahler manifolds. Such manifolds can be described as cones over tri-Sasakian metrics and are locally the product of a flat four-dimensional space and a quaternionic manifold. The latter manifolds appear in the coupling of hypermultiplets to N=2 supergravity. We employ local sections of an Sp(n)×Sp(1)(n)\times{\rm Sp}(1) bundle in the formulation of the Lagrangian and transformation rules, thus allowing for arbitrary coordinatizations of the hyper-K\"ahler and quaternionic manifolds
    corecore