542 research outputs found
Bayesian Inference for Brain Activity from Functional Magnetic Resonance Imaging Collected at Two Spatial Resolutions
Neuroradiologists and neurosurgeons increasingly opt to use functional
magnetic resonance imaging (fMRI) to map functionally relevant brain regions
for noninvasive presurgical planning and intraoperative neuronavigation. This
application requires a high degree of spatial accuracy, but the fMRI
signal-to-noise ratio (SNR) decreases as spatial resolution increases. In
practice, fMRI scans can be collected at multiple spatial resolutions, and it
is of interest to make more accurate inference on brain activity by combining
data with different resolutions. To this end, we develop a new Bayesian model
to leverage both better anatomical precision in high resolution fMRI and higher
SNR in standard resolution fMRI. We assign a Gaussian process prior to the mean
intensity function and develop an efficient, scalable posterior computation
algorithm to integrate both sources of data. We draw posterior samples using an
algorithm analogous to Riemann manifold Hamiltonian Monte Carlo in an expanded
parameter space. We illustrate our method in analysis of presurgical fMRI data,
and show in simulation that it infers the mean intensity more accurately than
alternatives that use either the high or standard resolution fMRI data alone.Comment: 37 pages, 12 figure
MMORF—FSL’s MultiMOdal Registration Framework
We present MMORF—FSL’s MultiMOdal Registration Framework—a newly released nonlinear image registration tool designed primarily for application to magnetic resonance imaging (MRI) images of the brain. MMORF is capable of simultaneously optimising both displacement and rotational transformations within a single registration framework by leveraging rich information from multiple scalar and tensor modalities. The regularisation employed in MMORF promotes local rigidity in the deformation, and we have previously demonstrated how this effectively controls both shape and size distortion, leading to more biologically plausible warps. The performance of MMORF is benchmarked against three established nonlinear registration methods—FNIRT, ANTs, and DR-TAMAS—across four domains: FreeSurfer label overlap, diffusion tensor imaging (DTI) similarity, task-fMRI cluster mass, and distortion. The evaluation is based on 100 unrelated subjects from the Human Connectome Project (HCP) dataset registered to the Oxford-MultiModal-1 (OMM-1) multimodal template via either the T1w contrast alone or in combination with a DTI/DTI-derived contrast. Results show that MMORF is the most consistently high-performing method across all domains—both in terms of accuracy and levels of distortion. MMORF is available as part of FSL, and its inputs and outputs are fully compatible with existing workflows. We believe that MMORF will be a valuable tool for the neuroimaging community, regardless of the domain of any downstream analysis, providing state-of-the-art registration performance that integrates into the rich and widely adopted suite of analysis tools in FSL
Manifestations of early brain recovery associated with abstinence from alcoholism
Chronic alcohol abuse results in morphological, metabolic, and functional brain damage which may, to some extent, be reversible with early effects upon abstinence. Although morphometric, spectroscopic, and neuropsychological indicators of cerebral regeneration have been described previously, the overall amount and spatial preference of early brain recovery attained by abstinence and its associations with other indicators of regeneration are not well established. We investigated global and local brain volume changes in a longitudinal two-timepoint study with T1-weighted MRI at admission and after short-term (6-7 weeks) sobriety follow-up in 15 uncomplicated, recently detoxified alcoholics. Volumetric brain gain was related to metabolic and neuropsychological recovery. On admission and after short-term abstinence, structural image evaluation using normalization of atrophy (SIENA), its voxelwise statistical extension to multiple subjects, proton MR spectroscopy (1H-MRS), and neuropsychological tests were applied. Upon short-term sobriety, 1H-MRS levels of cerebellar choline and frontomesial N-acetylaspartate (NAA) were significantly augmented. Automatically detected global brain volume gain amounted to nearly two per cent on average and was spatially significant around the superior vermis, perimesencephalic, periventricular and frontal brain edges. It correlated positively with the percentages of cerebellar and frontomesial choline increase, as detected by 1H-MRS. Moreover, frontomesial NAA gains were associated with improved performance on the d2-test of attention. In 10 age- and gender-matched healthy control subjects, no significant brain volume or metabolite changes were observed. Although cerebral osmotic regulations may occur initially upon sobriety, significant increases of cerebellar choline and frontomesial NAA levels detected at stable brain water integrals and creatine concentrations, serum electrolytes and red blood cell indices in our patient sample suggest that early brain recovery through abstinence does not simply reflect rehydration. Instead, even the adult human brain and particularly its white matter seems to possess genuine capabilities for regrowth. Our findings emphasize metabolic as well as regionally distinct morphological capacities for partial brain recovery from toxic insults of chronic alcoholism and substantiate early measurable benefits of therapeutic sobriety. Further understanding of the precise mechanisms of this recovery may become a valuable model of brain regeneration with relevance for other disorder
Approaching boiling point stability of an alcohol dehydrogenase through computationally-guided enzyme engineering
Enzyme instability is an important limitation for the investigation and application of enzymes. Therefore, methods to rapidly and effectively improve enzyme stability are highly appealing. In this study we applied a computational method (FRESCO) to guide the engineering of an alcohol dehydrogenase. Of the 177 selected mutations, 25 mutations brought about a significant increase in apparent melting temperature (ΔTm ≥ +3 °C). By combining mutations, a 10-fold mutant was generated with a Tm of 94 °C (+51 °C relative to wildtype), almost reaching water's boiling point, and the highest increase with FRESCO to date. The 10-fold mutant's structure was elucidated, which enabled the identification of an activity-impairing mutation. After reverting this mutation, the enzyme showed no loss in activity compared to wildtype, while displaying a Tm of 88 °C (+45 °C relative to wildtype). This work demonstrates the value of enzyme stabilization through computational library design
Conservation of Distinct Genetically-Mediated Human Cortical Pattern
The many subcomponents of the human cortex are known to follow an anatomical pattern and functional relationship that appears to be highly conserved between individuals. This suggests that this pattern and the relationship among cortical regions are important for cortical function and likely shaped by genetic factors, although the degree to which genetic factors contribute to this pattern is unknown. We assessed the genetic relationships among 12 cortical surface areas using brain images and genotype information on 2,364 unrelated individuals, brain images on 466 twin pairs, and transcriptome data on 6 postmortem brains in order to determine whether a consistent and biologically meaningful pattern could be identified from these very different data sets. We find that the patterns revealed by each data set are highly consistent (p<10−3), and are biologically meaningful on several fronts. For example, close genetic relationships are seen in cortical regions within the same lobes and, the frontal lobe, a region showing great evolutionary expansion and functional complexity, has the most distant genetic relationship with other lobes. The frontal lobe also exhibits the most distinct expression pattern relative to the other regions, implicating a number of genes with known functions mediating immune and related processes. Our analyses reflect one of the first attempts to provide an assessment of the biological consistency of a genetic phenomenon involving the brain that leverages very different types of data, and therefore is not just statistical replication which purposefully use very similar data sets.publishedVersio
Whole body and hematopoietic ADAM8 deficiency does not influence advanced atherosclerotic lesion development, despite its association with human plaque progression
Although A Disintegrin And Metalloproteinase 8 (ADAM8) is not crucial for tissue development and homeostasis, it has been implicated in various inflammatory diseases by regulating processes like immune cell recruitment and activation. ADAM8 expression has been associated with human atherosclerosis development and myocardial infarction, however a causal role of ADAM8 in atherosclerosis has not been investigated thus far. In this study, we examined the expression of ADAM8 in early and progressed human atherosclerotic lesions, in which ADAM8 was significantly upregulated in vulnerable lesions. In addition, ADAM8 expression was most prominent in the shoulder region of human atherosclerotic lesions, characterized by the abundance of foam cells. In mice, Adam8 was highly expressed in circulating neutrophils and in macrophages. Moreover, ADAM8 deficient mouse macrophages displayed reduced secretion of inflammatory mediators. Remarkably, however, neither hematopoietic nor whole-body ADAM8 deficiency in mice affected atherosclerotic lesion size. Additionally, except for an increase in granulocyte content in plaques of ADAM8 deficient mice, lesion morphology was unaffected. Taken together, whole body and hematopoietic ADAM8 does not contribute to advanced atherosclerotic plaque development, at least in female mice, although its expression might still be valuable as a diagnostic/ prognostic biomarker to distinguish between stable and unstable lesions
MicroRNAs targeting oncogenes are down-regulated in pancreatic malignant transformation from benign tumors
BACKGROUND
MicroRNA (miRNA) expression profiles have been described in pancreatic ductal adenocarcinoma (PDAC), but these have not been compared with pre-malignant pancreatic tumors. We wished to compare the miRNA expression signatures in pancreatic benign cystic tumors (BCT) of low and high malignant potential with PDAC, in order to identify miRNAs deregulated during PDAC development. The mechanistic consequences of miRNA dysregulation were further evaluated.
METHODS
Tissue samples were obtained at a tertiary pancreatic unit from individuals with BCT and PDAC. MiRNA profiling was performed using a custom microarray and results were validated using RT-qPCR prior to evaluation of miRNA targets.
RESULTS
Widespread miRNA down-regulation was observed in PDAC compared to low malignant potential BCT. We show that amongst those miRNAs down-regulated, miR-16, miR-126 and let-7d regulate known PDAC oncogenes (targeting BCL2, CRK and KRAS respectively). Notably, miR-126 also directly targets the KRAS transcript at a "seedless" binding site within its 3'UTR. In clinical specimens, miR-126 was strongly down-regulated in PDAC tissues, with an associated elevation in KRAS and CRK proteins. Furthermore, miR-21, a known oncogenic miRNA in pancreatic and other cancers, was not elevated in PDAC compared to serous microcystic adenoma (SMCA), but in both groups it was up-regulated compared to normal pancreas, implicating early up-regulation during malignant change.
CONCLUSIONS
Expression profiling revealed 21 miRNAs down-regulated in PDAC compared to SMCA, the most benign lesion that rarely progresses to invasive carcinoma. It appears that miR-21 up-regulation is an early event in the transformation from normal pancreatic tissue. MiRNA expression has the potential to distinguish PDAC from normal pancreas and BCT. Mechanistically the down-regulation of miR-16, miR-126 and let-7d promotes PDAC transformation by post-transcriptional up-regulation of crucial PDAC oncogenes. We show that miR-126 is able to directly target KRAS; re-expression has the potential as a therapeutic strategy against PDAC and other KRAS-driven cancers
A Preoperative Clinical Risk Score Including C-Reactive Protein Predicts Histological Tumor Characteristics and Patient Survival after Surgery for Sporadic Non-Functional Pancreatic Neuroendocrine Neoplasms:An International Multicenter Cohort Study
Background: Oncological survival after resection of pancreatic neuroendocrine neoplasms (panNEN) is highly variable depending on various factors. Risk stratification with preoperatively available parameters could guide decision-making in multidisciplinary treatment concepts. C-reactive Protein (CRP) is linked to inferior survival in several malignancies. This study assesses CRP within a novel risk score predicting histology and outcome after surgery for sporadic non-functional panNENs. Methods: A retrospective multicenter study with national exploration and international validation. CRP and other factors associated with overall survival (OS) were evaluated by multivariable cox-regression to create a clinical risk score (CRS). Predictive values regarding OS, disease-specific survival (DSS), and recurrence-free survival (RFS) were assessed by time-dependent receiver-operating characteristics. Results: Overall, 364 patients were included. Median CRP was significantly higher in patients >60 years, G3, and large tumors. In multivariable analysis, CRP was the strongest preoperative factor for OS in both cohorts. In the combined cohort, CRP (cut-off >= 0.2 mg/dL; hazard-ratio (HR):3.87), metastases (HR:2.80), and primary tumor size >= 3.0 cm (HR:1.83) showed a significant association with OS. A CRS incorporating these variables was associated with postoperative histological grading, T category, nodal positivity, and 90-day morbidity/mortality. Time-dependent area-under-the-curve at 60 months for OS, DSS, and RFS was 69%, 77%, and 67%, respectively (all p <0.001), and the inclusion of grading further improved the predictive potential (75%, 84%, and 78%, respectively). Conclusions: CRP is a significant marker of unfavorable oncological characteristics in panNENs. The proposed internationally validated CRS predicts histological features and patient survival
Infrastructure for Detector Research and Development towards the International Linear Collider
The EUDET-project was launched to create an infrastructure for developing and
testing new and advanced detector technologies to be used at a future linear
collider. The aim was to make possible experimentation and analysis of data for
institutes, which otherwise could not be realized due to lack of resources. The
infrastructure comprised an analysis and software network, and instrumentation
infrastructures for tracking detectors as well as for calorimetry.Comment: 54 pages, 48 picture
ADAM8 signaling drives neutrophil migration and ARDS severity
Acute respiratory distress syndrome (ARDS) results in catastrophic lung failure and has an urgent,
unmet need for improved early recognition and therapeutic development. Neutrophil influx is a
hallmark of ARDS and is associated with the release of tissue-destructive immune effectors, such
as matrix metalloproteinases (MMPs) and membrane-anchored metalloproteinase disintegrins
(ADAMs). Here, we observed using intravital microscopy that Adam8–/– mice had impaired
neutrophil transmigration. In mouse pneumonia models, both genetic deletion and pharmacologic
inhibition of ADAM8 attenuated neutrophil infiltration and lung injury while improving bacterial
containment. Unexpectedly, the alterations of neutrophil function were not attributable to impaired
proteolysis but resulted from reduced intracellular interactions of ADAM8 with the actin-based
motor molecule Myosin1f that suppressed neutrophil motility. In 2 ARDS cohorts, we analyzed
lung fluid proteolytic signatures and identified that ADAM8 activity was positively correlated with
disease severity. We propose that in acute inflammatory lung diseases such as pneumonia and
ARDS, ADAM8 inhibition might allow fine-tuning of neutrophil responses for therapeutic gain
- …