39 research outputs found

    Velocity images from stacking depth-slowness seismic wavefields

    Get PDF
    International audienceWe present synthetic and real data examples processed using a depth imaging method for long-offset multichannel seismic data via the intercept-time-slowness (τ-p) domain. The refracted and reflected information contained in the wavefield is processed simultaneously. Our scheme uses common midpoint data that is transformed to the τ-p domain and mapped to the depth-slowness (z-p) domain using a downward continuation algorithm. The velocity function for downward continuation may be obtained iteratively from the diving ray trajectory within the slowness-depth wavefield or estimated using an independent method. Horizontal events within the z-p wavefield are isolated by applying a mute function corresponding to the downward continuation velocity function in the z-p domain. Stacking the resulting wavefield gives an image trace that may be superimposed on the velocity function to form a velocity image. Following testing on synthetic data the method is applied to two long-offset marine seismic streamer data sets with offsets up to 18 km, from the northeast Atlantic margin. These examples demonstrate the potential of the method to obtain velocity images in difficult geological locations, where conventional processing has been less successful

    Genome wide analysis of the complete GlnR nitrogen-response regulon in Mycobacterium smegmatis

    Get PDF
    BACKGROUND: Nitrogen is an essential element for bacterial growth and an important component of biological macromolecules. Consequently, responding to nitrogen limitation is critical for bacterial survival and involves the interplay of signalling pathways and transcriptional regulation of nitrogen assimilation and scavenging genes. In the soil dwelling saprophyte Mycobacterium smegmatis the OmpR-type response regulator GlnR is thought to mediate the transcriptomic response to nitrogen limitation. However, to date only ten genes have been shown to be in the GlnR regulon, a vastly reduced number compared to other organisms. RESULTS: We investigated the role of GlnR in the nitrogen limitation response and determined the entire GlnR regulon, by combining expression profiling of M. smegmatis wild type and glnR deletion mutant, with GlnR-specific chromatin immunoprecipitation and high throughput sequencing. We identify 53 GlnR binding sites during nitrogen limitation that control the expression of over 100 genes, demonstrating that GlnR is the regulator controlling the assimilation and utilisation of nitrogen. We also determine a consensus GlnR binding motif and identify key residues within the motif that are required for specific GlnR binding. CONCLUSIONS: We have demonstrated that GlnR is the global nitrogen response regulator in M. smegmatis, directly regulating the expression of more than 100 genes. GlnR controls key nitrogen stress survival processes including primary nitrogen metabolism pathways, the ability to utilise nitrate and urea as alternative nitrogen sources, and the potential to use cellular components to provide a source of ammonium. These studies further our understanding of how mycobacteria survive nutrient limiting conditions

    Translational arrest due to cytoplasmic redox stress delays adaptation to growth on methanol and heterologous protein expression in a typical fed-batch culture of Pichia pastoris

    Get PDF
    Results We have followed a typical fed-batch induction regime for heterologous protein production under the control of the AOX1 promoter using both microarray and metabolomic analysis. The genetic constructs involved 1 and 3 copies of the TRY1 gene, encoding human trypsinogen. In small-scale laboratory cultures, expression of the 3 copy-number construct induced the unfolded protein response (UPR) sufficiently that titres of extracellular trypsinogen were lower in the 3-copy construct than with the 1-copy construct. In the fed-batch-culture, a similar pattern was observed, with higher expression from the 1-copy construct, but in this case there was no significant induction of UPR with the 3-copy strain. Analysis of the microarray and metabolomic information indicates that the 3-copy strain was undergoing cytoplasmic redox stress at the point of induction with methanol. In this Crabtree-negative yeast, this redox stress appeared to delay the adaptation to growth on methanol and supressed heterologous protein production, probably due to a block in translation. Conclusion Although redox imbalance as a result of artificially imposed hypoxia has previously been described, this is the first time that it has been characterised as a result of a transient metabolic imbalance and shown to involve a stress response which can lead to translational arrest. Without detailed analysis of the underlying processes it could easily have been mis-interpreted as secretion stress, transmitted through the UPR

    Interactions between inflammatory signals and the progesterone receptor in regulating gene expression in pregnant human uterine myocytes

    Get PDF
    The absence of a fall in circulating progesterone levels has led to the concept that human labour is associated with ‘functional progesterone withdrawal’ caused through changes in the expression or function of progesterone receptor (PR). At the time of labour, the human uterus is heavily infiltrated with inflammatory cells, which release cytokines to create a ‘myometrial inflammation’ via NF-κB activation. The negative interaction between NF-κB and PR, may represent a mechanism to account for ‘functional progesterone withdrawal’ at term. Conversely, PR may act to inhibit NF-κB function and so play a role in inhibition of myometrial inflammation during pregnancy. To model this inter-relationship, we have used small interfering (si) RNA-mediated knock-down of PR in human pregnant myocytes and whole genome microarray analysis to identify genes regulated through PR. We then activated myometrial inflammation using IL-1β stimulation to determine the role of PR in myometrial inflammation regulation. Through PR-knock-down, we found that PR regulates gene networks involved in myometrial quiescence and extracellular matrix integrity. Activation of myometrial inflammation was found to antagonize PR-induced gene expression, of genes normally upregulated via PR. We found that PR does not play a role in repression of pro-inflammatory gene networks induced by IL-1β and that only MMP10 was significantly regulated in opposite directions by IL-1β and PR. We conclude that progesterone acting through PR does not generally inhibit myometrial inflammation. Activation of myometrial inflammation does cause ‘functional progesterone withdrawal’ but only in the context of genes normally upregulated via PR

    Translational arrest due to cytoplasmic redox stress delays adaptation to growth on methanol and heterologous protein expression in a typical fed-batch culture of <i>Pichia pastoris</i>

    Get PDF
    <div><p>Results</p><p>We have followed a typical fed-batch induction regime for heterologous protein production under the control of the <i>AOX1</i> promoter using both microarray and metabolomic analysis. The genetic constructs involved 1 and 3 copies of the <i>TRY1</i> gene, encoding human trypsinogen. In small-scale laboratory cultures, expression of the 3 copy-number construct induced the unfolded protein response (UPR) sufficiently that titres of extracellular trypsinogen were lower in the 3-copy construct than with the 1-copy construct. In the fed-batch-culture, a similar pattern was observed, with higher expression from the 1-copy construct, but in this case there was no significant induction of UPR with the 3-copy strain. Analysis of the microarray and metabolomic information indicates that the 3-copy strain was undergoing cytoplasmic redox stress at the point of induction with methanol. In this Crabtree-negative yeast, this redox stress appeared to delay the adaptation to growth on methanol and supressed heterologous protein production, probably due to a block in translation.</p><p>Conclusion</p><p>Although redox imbalance as a result of artificially imposed hypoxia has previously been described, this is the first time that it has been characterised as a result of a transient metabolic imbalance and shown to involve a stress response which can lead to translational arrest. Without detailed analysis of the underlying processes it could easily have been mis-interpreted as secretion stress, transmitted through the UPR.</p></div

    Implications of multiple freeze-thawing on respiratory samples for culture-independent analyses

    Get PDF
    © 2014 . Background: Best practice when performing culture-independent microbiological analysis of sputum samples involves their rapid freezing and storage at -80 °C. However, accessing biobanked collections can mean that material has been passed through repeated freeze-thaw cycles. The aim of this study was to determine the impact of these cycles on microbial community profiles. Methods: Sputum was collected from eight adults with cystic fibrosis, and each sample was subjected to six freeze-thaw cycles. Following each cycle, an aliquot was removed and treated with propidium monoazide (PMA) prior to DNA extraction and 16S rRNA gene pyrosequencing. Results: The impact of freeze-thaw cycles was greatest on rare members of the microbiota, with variation beyond that detected with within-sample repeat analysis observed after three cycles. Conclusion: Four or more freeze thaw cycles result in a significant distortion of microbiota profiles from CF sputum

    Upper limit map of a background of gravitational waves

    Get PDF
    We searched for an anisotropic background of gravitational waves using data from the LIGO S4 science run and a method that is optimized for point sources. This is appropriate if, for example, the gravitational wave background is dominated by a small number of distinct astrophysical sources. No signal was seen. Upper limit maps were produced assuming two different power laws for the source strain power spectrum. For an f^-3 power law and using the 50 Hz to 1.8 kHz band the upper limits on the source strain power spectrum vary between 1.2e-48 Hz^-1 (100 Hz/f)^3 and 1.2e-47 Hz^-1 (100 Hz /f)^3, depending on the position in the sky. Similarly, in the case of constant strain power spectrum, the upper limits vary between 8.5e-49 Hz^-1 and 6.1e-48 Hz^-1. As a side product a limit on an isotropic background of gravitational waves was also obtained. All limits are at the 90% confidence level. Finally, as an application, we focused on the direction of Sco-X1, the closest low-mass X-ray binary. We compare the upper limit on strain amplitude obtained by this method to expectations based on the X-ray luminosity of Sco-X1.Comment: 11 pages, 9 figures, 2 table

    Upper limit map of a background of gravitational waves

    Get PDF
    We searched for an anisotropic background of gravitational waves using data from the LIGO S4 science run and a method that is optimized for point sources. This is appropriate if, for example, the gravitational wave background is dominated by a small number of distinct astrophysical sources. No signal was seen. Upper limit maps were produced assuming two different power laws for the source strain power spectrum. For an f^-3 power law and using the 50 Hz to 1.8 kHz band the upper limits on the source strain power spectrum vary between 1.2e-48 Hz^-1 (100 Hz/f)^3 and 1.2e-47 Hz^-1 (100 Hz /f)^3, depending on the position in the sky. Similarly, in the case of constant strain power spectrum, the upper limits vary between 8.5e-49 Hz^-1 and 6.1e-48 Hz^-1. As a side product a limit on an isotropic background of gravitational waves was also obtained. All limits are at the 90% confidence level. Finally, as an application, we focused on the direction of Sco-X1, the closest low-mass X-ray binary. We compare the upper limit on strain amplitude obtained by this method to expectations based on the X-ray luminosity of Sco-X1.Comment: 11 pages, 9 figures, 2 table
    corecore