485 research outputs found

    Forming young bulges within existing disks: Statistical evidence for external drivers

    Get PDF
    Contrary to traditional models of galaxy formation, recent observations suggest that some bulges form within preexisting disk galaxies. Such late-epoch bulge formation within disks seems to be linked to disk gas inflow and central star formation, caused by either internal secular processes or galaxy mergers and interactions. We identify a population of galaxies likely to be experiencing active bulge growth within disks, using the criterion that the color within the half-light radius is bluer than the outer disk color. Such blue-centered galaxies make up more than 10% of star-forming disk galaxies within the Nearby Field Galaxy Survey, a broad survey designed to represent the natural diversity of the low-z galaxy population over a wide range of luminosities and environments. Blue-centered galaxies correlate at 99% confidence with morphological peculiarities suggestive of minor mergers and interactions. From this and other evidence, we argue that external drivers rather than internal secular processes probably account for the majority of blue-centered galaxies. We go on to discuss quantitative plausibility arguments indicating that blue-centered evolutionary phases may represent an important mode of bulge growth for most disk galaxies, leading to significant changes in bulge-to-disk ratio without destroying disks. If this view is correct, bulge growth within disks may be a natural consequence of the repeated galaxy mergers and interactions inherent in hierarchical galaxy formation

    Photon Propagation in Space-Time with a Compactified Spatial Dimension

    Get PDF
    The one-loop effects of vacuum polarization induced by untwisted fermions in QED in a nonsimply connected space-time with topology S1×R3S^{1}\times R^{3} are investigated. It is found that photon propagation in this system is anisotropic, appearing several massive photon modes and a superluminal transverse mode. For small compactification radius aa, the superluminal velocity increases logarithmically with aa. At low energies the photon masses lead to an effective confinement of the gauge fields into a (2+1)-dimensional manifold transverse to the compactified direction. The system shows a topologically induced directional superconductivity.Comment: 5 pages, to appear in PL

    Observed soil moisture impact on strong convection over mountainous Tibetan Plateau

    Get PDF
    Convection over the Tibetan Plateau (TP) has been linked to heavy rain and flooding in downstream parts of China. Understanding processes which influence the development of convection on the TP could contribute to better forecasting of these extreme events. TP scale (~1000 km) soil moisture gradients have been shown to influence formation of convective systems over the eastern TP. The importance of smaller-scale (~10 km) variability has been identified in other regions (including the Sahel and Mongolia) but has yet to be investigated for the TP. In addition, compared to studies over flat terrain, much less is known about soil moisture–convection feedbacks above complex topography. In this study we use satellite observations of cold cloud, land surface temperature, and soil moisture to analyze the effect of mesoscale soil moisture heterogeneity on the initiation of strong convection in the complex TP environment. We find that strong convection is favored over negative (positive) land surface temperature (soil moisture) gradients. The signal is strongest for less vegetation and low topographic complexity, though still significant up to a local standard deviation of 300 m in elevation, accounting for 65% of cases. In addition, the signal is dependent on background wind. Strong convective initiation is only sensitive to local (tens of kilometers) soil moisture heterogeneity for light wind speeds, though large-scale (hundreds of kilometers) gradients may still be important for strong wind speeds. Our results demonstrate that, even in the presence of complex topography, local soil moisture variability plays an important role in storm development

    The starburst phenomenon from the optical/near-IR perspective

    Full text link
    The optical/near-IR stellar continuum carries unique information about the stellar population in a galaxy, its mass function and star-formation history. Star-forming regions display rich emission-line spectra from which we can derive the dust and gas distribution, map velocity fields, metallicities and young massive stars and locate shocks and stellar winds. All this information is very useful in the dissection of the starburst phenomenon. We discuss a few of the advantages and limitations of observations in the optical/near-IR region and focus on some results. Special attention is given to the role of interactions and mergers and observations of the relatively dust-free starburst dwarfs. In the future we expect new and refined diagnostic tools to provide us with more detailed information about the IMF, strength and duration of the burst and its triggering mechanisms.Comment: 6 pages, 3 figures, to appear in "Starbursts: from 30 Doradus to Lyman Break Galaxies" 2005, eds. R. de Grijs and R. M. Gonzalez Delgado (Kluwer

    Predicting Neutron Production from Cosmic-ray Muons

    Get PDF
    Fast neutrons from cosmic-ray muons are an important background to underground low energy experiments. The estimate of such background is often hampered by the difficulty of measuring and calculating neutron production with sufficient accuracy. Indeed substantial disagreement exists between the different analytical calculations performed so far, while data reported by different experiments is not always consistent. We discuss a new unified approach to estimate the neutron yield, the energy spectrum, the multiplicity and the angular distribution from cosmic muons using the Monte Carlo simulation package FLUKA and show that it gives a good description of most of the existing measurements once the appropriate corrections have been applied.Comment: 8 pages, 7 figure

    Superluminal pions in a hadronic fluid

    Full text link
    We study the propagation of pions at finite temperature and finite chemical potential in the framework of the linear sigma model with 2 quark flavors and NcN_c colors. The velocity of massless pions in general differs from that of light. One-loop calculations show that in the chiral symmetry broken phase pions, under certain conditions, propagate faster than light.Comment: 8 pages, 3 figures included. Considerably revised, discussions expanded, one figure added, typos corrected, results unchanged. To be published in Phys. Rev.

    A Systematic Extended Iterative Solution for QCD

    Full text link
    An outline is given of an extended perturbative solution of Euclidean QCD which systematically accounts for a class of nonperturbative effects, while allowing renormalization by the perturbative counterterms. Proper vertices Gamma are approximated by a double sequence Gamma[r,p], with r the degree of rational approximation w.r.t. the QCD mass scale Lambda, nonanalytic in the coupling g, and p the order of perturbative corrections in g-squared, calculated from Gamma[r,0] - rather than from the perturbative Feynman rules Gamma(0)(pert) - as a starting point. The mechanism allowing the nonperturbative terms to reproduce themselves in the Dyson-Schwinger equations preserves perturbative renormalizability and is tied to the divergence structure of the theory. As a result, it restricts the self-consistency problem for the Gamma[r,0] rigorously - i.e. without decoupling approximations - to the superficially divergent vertices. An interesting aspect of the scheme is that rational-function sequences for the propagators allow subsequences describing short-lived excitations. The method is calculational, in that it allows known techniques of loop computation to be used while dealing with integrands of truly nonperturbative content.Comment: 48 pages (figures included). Scope of replacement: correction of a technical defect; no changes in conten

    Cosmology, Particle Physics and Superfluid 3He

    Full text link
    Many direct parallels connect superfluid 3He with the field theories describing the physical vacuum, gauge fields and elementary fermions. Superfluid 3^3He exhibits a variety of topological defects which can be detected with single-defect sensitivity. Modern scenarios of defect-mediated baryogenesis can be simulated by the interaction of the 3He vortices and domain walls with fermionic quasiparticles. Formation of defects in a symmetry-breaking phase transition in the early Universe, which could be responsible for large-scale structure formation and for microwave-background anisotropy, also may be modelled in the laboratory. This is supported by the recent observation of vortex formation in neutron-irradiated 3He-B where the "primordial fireball" is formed in an exothermic nuclear reaction.Comment: Invited talk at LT-21 Conference, 20 pages, 3 figures available at request, compressed ps file of the camera-ready format with 3 figures is at ftp://boojum.hut.fi/pub/publications/lowtemp/LTL-96006.ps.g

    First Light and Reionization: A Conference Summary

    Full text link
    The search for the first illuminated astronomical sources in the universe is at the edge of the cosmic frontier. Promising techniques for discovering the first objects and their effects span the electromagnetic spectrum and include gravitational waves. We summarize a workshop on discovering and understanding these sources which was held in May 2005 through the Center for Cosmology at the University of California, Irvine.Comment: to appear in the proceedings of the UC Irvine Workshop on "First Light and Reionization: Theoretical Study and Experimental Detection of the First Luminous Sources", eds. A. Cooray & E. Barton, New Astronomy Reviews; replacement version with references updated, minor errors fixe

    Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

    Get PDF
    For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial change
    corecore