206 research outputs found

    The Response of Big Sagebrush (\u3ci\u3eArtemisia tridentata\u3c/i\u3e) to Interannual Climate Variation Changes Across Its Range

    Get PDF
    Understanding how annual climate variation affects population growth rates across a species\u27 range may help us anticipate the effects of climate change on species distribution and abundance. We predict that populations in warmer or wetter parts of a species\u27 range should respond negatively to periods of above average temperature or precipitation, respectively, whereas populations in colder or drier areas should respond positively to periods of above average temperature or precipitation. To test this, we estimated the population sensitivity of a common shrub species, big sagebrush (Artemisia tridentata), to annual climate variation across its range. Our analysis includes 8,175 observations of year‐to‐year change in sagebrush cover or production from 131 monitoring sites in western North America. We coupled these observations with seasonal weather data for each site and analyzed the effects of spring through fall temperatures and fall through spring accumulated precipitation on annual changes in sagebrush abundance. Sensitivity to annual temperature variation supported our hypothesis: years with above average temperatures were beneficial to sagebrush in colder locations and detrimental to sagebrush in hotter locations. In contrast, sensitivity to precipitation did not change significantly across the distribution of sagebrush. This pattern of responses suggests that regional abundance of this species may be more limited by temperature than by precipitation. We also found important differences in how the ecologically distinct subspecies of sagebrush responded to the effects of precipitation and temperature. Our model predicts that a short‐term temperature increase could produce an increase in sagebrush cover at the cold edge of its range and a decrease in cover at the warm edge of its range. This prediction is qualitatively consistent with predictions from species distribution models for sagebrush based on spatial occurrence data, but it provides new mechanistic insight and helps estimate how much and how fast sagebrush cover may change within its range

    Recording fine‐scale movement of ground beetles by two methods: Potentials and methodological pitfalls

    Get PDF
    Movement trajectories are usually recorded as a sequence of discrete movement events described by two parameters: step length (distance) and turning angle (bearing). One of the most widespread methods to record the geocoordinates of each step is by a GPS device. Such devices have limited suitability for recording fine movements of species with low dispersal ability including flightless carabid beetles at small spatio‐temporal scales. As an alternative, the distance‐bearing approach can avoid the measurement error of GPS units since it uses directly measured distances and compass azimuths. As no quantification of measurement error between distance‐bearing and GPS approaches exists so far, we generated artificial fine‐scale trajectories and in addition radio‐tracked living carabids in a temperate forest and recorded each movement step by both methods. Trajectories obtained from distance‐bearing were compared to those obtained by a GPS device in terms of movement parameters. Consequently, both types of trajectories were segmented by state‐switching modeling into two distinct movement stages typical for carabids: random walk and directed movement. We found that the measurement error of GPS compared to distance‐bearing was 1.878 m (SEM = 0.181 m) for distances and 31.330° (SEM = 2.066°) for bearings. Moreover, these errors increased under dense forest canopy and rainy weather. Distance error did not change with increasing distance recorded by distance‐bearing but bearings were significantly more sensitive to error at short distances. State‐switching models showed only slight, not significant, differences in movement states between the two methods in favor of the random walk in the distance‐bearing approach. However, the shape of the GPS‐measured trajectories considerably differed from those recorded by distance‐bearing caused especially by bearing error at short distances. Our study showed that distance‐bearing could be more appropriate for recording movement steps not only of ground‐dwelling beetles but also other small animals at fine spatio‐temporal scales

    Age and terminal reproductive attempt influence laying date in the Thorn‐tailed Rayadito

    Get PDF
    Age‐specific variation in reproductive effort can affect population dynamics, and is a key component of the evolution of reproductive tactics. Late‐life declines are a typical feature of variation in reproduction. However, the cause of these declines, and thus their implications for the evolution of life‐history tactics, may differ. Some prior studies have shown late‐life reproductive declines to be tied to chronological age, whereas other studies have found declines associated with terminal reproduction irrespective of chronological age. We investigated the extent to which declines in late life reproduction are related to chronological age, terminal reproductive attempt or a combination of both in the Thorn‐tailed Rayadito (Aphrastura spinicauda), a small passerine bird that inhabits the temperate forest of South America. To this end we used long‐term data (10 years) obtained on reproductive success (laying date, clutch size and nestling weight) of females in a Chilean population. Neither chronological age nor terminal reproductive attempt explained variation in clutch size or nestling weight, however we observed that during the terminal reproductive attempt older females tended to lay later in the breeding season and younger females laid early in the breeding season, but this was not the case when the reproductive attempt was not the last. These results suggests that both age‐dependent and age‐independent effects influence reproductive output and therefore that the combined effects of age and physiological condition may be more relevant than previously thought

    The effect of metabolic phenotype on sociability and social group size preference in a coral reef fish

    Get PDF
    Although individuals within social groups experience reduced predation risk and find food patches more consistently, there can be competition for food among groupmates. Individuals with a higher standard metabolic rate (SMR) may be less social, to prioritize food acquisition over defense, while a greater maximum metabolic rate (MMR) may modulate sociability through increased competitive ability. Therefore, in theory, individuals with a higher SMR may prefer smaller groups and those with greater MMR may prefer larger groups. We examined links among metabolic phenotype, sociability, and choice of group size in the redbelly yellowtail fusilier Caesio cuning. Individuals were exposed to three association tests: (a) a choice between two fish or zero fish; (b) a choice between five fish or zero fish; and (c) a choice between two fish and five fish. The first two tests quantified sociability while the third measured relative group size choice. Although there was no link between SMR and sociability, fish with a higher MMR were more social than those individuals with a lower MMR. While no correlation was found between MMR and group size choice, there was weak evidence that, if anything, individuals with a higher SMR preferred larger groups, contrary to our hypothesis. As C. cuning is an active fish that spends a large proportion of time operating above SMR, this result could suggest that the links between sociability and SMR may shift depending on a species’ routine behavior. Links between sociability and MMR may arise if competitive ability allows individuals to obtain resources within groups. Although metabolic traits had no significant influence on group size choice, variation in food availability or predation risk could alter the effects of metabolism on group size choice

    Adaptive landscape genetics and malaria across divergent island bird populations

    Get PDF
    Environmental conditions play a major role in shaping the spatial distributions of pathogens, which in turn can drive local adaptation and divergence in host genetic diversity. Haemosporidians, such as Plasmodium (malaria), are a strong selective force, impacting survival and fitness of hosts, with geographic distributions largely determined by habitat suitability for their insect vectors. Here, we have tested whether patterns of fine‐scale local adaptation to malaria are replicated across discrete, ecologically differing island populations of Berthelot's pipits Anthus berthelotii . We sequenced TLR4, an innate immunity gene that is potentially under positive selection in Berthelot's pipits, and two SNPs previously identified as being associated with malaria infection in a genome‐wide association study (GWAS) in Berthelot's pipits in the Canary Islands. We determined the environmental predictors of malaria infection, using these to estimate variation in malaria risk on Porto Santo, and found some congruence with previously identified environmental risk factors on Tenerife. We also found a negative association between malaria infection and a TLR4 variant in Tenerife. In contrast, one of the GWAS SNPs showed an association with malaria risk in Porto Santo, but in the opposite direction to that found in the Canary Islands GWAS. Together, these findings suggest that disease‐driven local adaptation may be an important factor in shaping variation among island populations

    Demographic and environmental drivers of metagenomic viral diversity in vampire bats

    Get PDF
    Viruses infect all forms of life and play critical roles as agents of disease, drivers of biochemical cycles and sources of genetic diversity for their hosts. Our understanding of viral diversity derives primarily from comparisons among host species, precluding insight into how intraspecific variation in host ecology affects viral communities or how predictable viral communities are across populations. We test spatial, demographic and environmental hypotheses explaining viral richness and community composition across populations of common vampire bats, which occur in diverse habitats of North, Central and South America. We demonstrate marked variation in viral communities which was not consistently predicted by a null model of declining community similarity with increasing spatial or genetic distances separating populations. We also find no evidence that larger bat colonies host greater viral diversity. Instead, viral diversity follows an elevational gradient, is enriched by juvenile‐biased age structure, and declines with local anthropogenic food resources as measured by livestock density. Our results establish the value of linking the modern influx of metagenomic sequence data with comparative ecology, reveal that snapshot views of viral diversity are unlikely to be representative at the species level, and affirm existing ecological theories that link host ecology not only to single pathogen dynamics but also to viral communities

    Dietary complexity and hidden costs of prey switching in a generalist top predator

    Get PDF
    Variation in predator diet is a critical aspect of food web stability, health, and population dynamics of predator/ prey communities. Quantifying diet, particularly among cryptic species, is extremely challenging, however, and differentiation between demographic subsets of populations is often overlooked. We used prey remains and data taken postmortem from otter Lutra lutra to determine the extent to which dietary variation in a top predator was associated with biotic, spatial, and temporal factors. Biotic data (e.g., sex, weight, and length) and stomach contents were taken from 610 otters found dead across England and Wales between 1994 and 2010. Prey remains were identified to species where possible, using published keys and reference materials. Multi‐model inference followed by model prediction was applied to test for and visualize the nature of associations. Evidence for widespread decline in the consumption of eels (Anguilla anguilla ) reflected known eel population declines. An association between eel consumption and otter body condition suggested negative consequences for otter nutrition. Consumption of Cottus gobio and stickleback spp. increased, but was unlikely to compensate (there was no association with body condition). More otters with empty stomachs were found over time. Otter sex, body length, and age‐class were important biotic predictors of the prey species found, and season, region, and distance from the coast were important abiotic predictors. Our study is unique in its multivariate nature, broad spatial scale, and long‐term dataset. Inclusion of biotic data allowed us to reveal important differences in costs and benefits of different prey types, and differences between demographic subsets of the population, overlaid on spatial and temporal variation. Such complexities in otter diet are likely to be paralleled in other predators, and detailed characterization of diet should not be overlooked in efforts to conserve wild populations

    What influences aggression and foraging activity in social birds? Measuring individual, group and environmental characteristics

    Get PDF
    This is the final version. Available from Wiley via the DOI in this record.For specialised feeders, accessing food resources may impact on the performance of appetitive foraging and social behaviours at individual and population levels. Flamingos are excellent examples of social species with complex, species‐specific feeding strategies. As attainment of coloured plumage depends upon intake of dietary carotenoids, and as study of free‐ranging flamingos shows that foraging is disrupted by aggression from other birds, we investigated the effect of four feeding styles on foraging and aggression in captive lesser flamingos. We evaluated individual and group differences in foraging and aggression when birds consumed bespoke “flamingo pellet” from a bowl, an indoor feeding pool and an outdoor feeding section of their pool. Natural foraging (when birds were feeding irrespective of the presence of pellet) was recorded for comparison with artificial feeding styles. One‐minute long video footage of the birds' activities in these different locations, recorded between 2013 and 2016, was used to evaluate behaviour. Total number of seconds engaged in feeding and in aggression was recorded by continuous sampling. The colour of individual birds was scored from 1 (mainly white) to 4 (mainly pink). For natural filter feeding in the outdoor pool, maximum foraging was twice as much as bowl feeding, whilst aggression was less than half as much as other feeding methods. Overall, a more restricted feeding style significantly predicted aggression, along with increasing group size. Plumage colour significantly influenced aggression (brightest flamingos were more aggressive) and showed a non‐significant trend with foraging (brighter birds fed less than paler birds). No sex effect on feeding or aggression was found. This study enhances our understanding of husbandry and species' biology impacts on captive behaviour and provides data‐based evidence to improve food presentation. For flamingos, implementation of spacious outdoor feeding areas can encourage natural foraging patterns by reducing excess aggression and enhances welfare by improving flock social stability

    Global distribution and drivers of language extinction risk

    Get PDF
    Many of the world's languages face serious risk of extinction. Efforts to prevent this cultural loss are severely constrained by a poor understanding of the geographical patterns and drivers of extinction risk. We quantify the global distribution of language extinction risk—represented by small range and speaker population sizes and rapid declines in the number of speakers—and identify the underlying environmental and socioeconomic drivers. We show that both small range and speaker population sizes are associated with rapid declines in speaker numbers, causing 25% of existing languages to be threatened based on criteria used for species. Language range and population sizes are small in tropical and arctic regions, particularly in areas with high rainfall, high topographic heterogeneity and/or rapidly growing human populations. By contrast, recent speaker declines have mainly occurred at high latitudes and are strongly linked to high economic growth. Threatened languages are numerous in the tropics, the Himalayas and northwestern North America. These results indicate that small-population languages remaining in economically developed regions are seriously threatened by continued speaker declines. However, risks of future language losses are especially high in the tropics and in the Himalayas, as these regions harbour many small-population languages and are undergoing rapid economic growth

    Drivers of plant diversity in Bulgarian dry grasslands vary across spatial scales and functional-taxonomic groups

    Get PDF
    Questions: Studying dry grasslands in a previously unexplored region, we asked: (a) which environmental factors drive the diversity patterns in vegetation; (b) are taxonomic groups (vascular plants, bryophytes, lichens) and functional vascular plant groups differently affected; and (c) how is fine-grain beta diversity affected by environmental drivers? Location: Northwestern and Central Bulgaria. Methods: We sampled environmental data and vascular plant, terricolous bryophyte and lichen species in 97 10-m2 plots and 15 nested-plot series with seven grain sizes (0.0001–100 m2) of ten grassland sites within the two regions. We used species richness as measure of alpha-diversity and the z-value of the power-law species–area relationship as measure of beta-diversity. We analysed effects of landscape, topographic, soil and land-use variables on the species richness of the different taxonomic and functional groups. We applied generalised linear models (GLMs) or, in the presence of spatial autocorrelation, generalised linear mixed-effect models (GLMMs) in a multi-model inference framework. Results: The main factors affecting total and vascular plant species richness in 10-m2 plots were soil pH (unimodal) and inclination (negative). Species richness of bryophytes was positively affected by rock cover, sand proportion and negatively by inclination. Inclination and litter cover were also negative predictors of lichen species richness. Elevation negatively affected phanerophyte and therophyte richness, but positively that of cryptophytes. A major part of unexplained variance in species richness was associated with the grassland site. The z-values for total richness showed a positive relationship with elevation and inclination. Conclusions: Environmental factors shaping richness patterns strongly differed among taxonomic groups, functional vascular plant groups and spatial scales. The disparities between our and previous findings suggest that many drivers of biodiversity cannot be generalised but rather depend on the regional context. The large unexplained variance at the site level calls for considering more site-related factors such as land-use history
    corecore